-
-
Notifications
You must be signed in to change notification settings - Fork 297
/
test_vgg16.py
79 lines (65 loc) · 2.5 KB
/
test_vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import unittest
import numpy as np
import chainer
import dezero
from dezero.utils import array_allclose
from dezero.models import VGG16
class TestVGG16(unittest.TestCase):
def test_forward1(self):
x = np.random.randn(1, 3, 224, 224).astype('f')
_model = chainer.links.VGG16Layers(None)
with chainer.using_config('train', False):
with chainer.using_config('enable_backprop', False):
out_layer_name = 'fc8'
_y = _model.forward(x, [out_layer_name])[out_layer_name]
model = VGG16()
layers = _model.available_layers
for l in layers:
if "conv" in l or "fc" in l:
m1 = getattr(model, l)
m2 = getattr(_model, l)
m1.W.data = m2.W.data
m1.b.data = m2.b.data
if "fc" in l:
m1.W.data = m1.W.data.T
with dezero.test_mode():
y = model(x)
self.assertTrue(array_allclose(y.data, _y.data))
def test_forward2(self):
x = np.random.randn(1, 3, 224, 224).astype('f')
model = VGG16()
y = model(x)
self.assertTrue(y.dtype == np.float32)
def test_backward1(self):
x = np.random.randn(2, 3, 224, 224).astype('f')
_model = chainer.links.VGG16Layers(None)
with chainer.using_config('train', False):
out_layer_name = 'fc8'
_y = _model.forward(x, [out_layer_name])[out_layer_name]
_y.grad = np.ones_like(_y.data)
_y.backward()
model = VGG16()
layers = _model.available_layers
for l in layers:
if "conv" in l or "fc" in l:
m1 = getattr(model, l)
m2 = getattr(_model, l)
m1.W.data = m2.W.data
m1.b.data = m2.b.data
if "fc" in l:
m1.W.data = m1.W.data.T
with dezero.test_mode():
y = model(x)
y.backward()
layers = _model.available_layers
for l in layers:
if "conv" in l:
m1 = getattr(model, l)
m2 = getattr(_model, l)
self.assertTrue(array_allclose(m1.W.data, m2.W.data))
self.assertTrue(array_allclose(m1.b.data, m2.b.data))
elif "fc" in l:
m1 = getattr(model, l)
m2 = getattr(_model, l)
self.assertTrue(array_allclose(m1.W.data, m2.W.data.T))
self.assertTrue(array_allclose(m1.b.data, m2.b.data))