-
Notifications
You must be signed in to change notification settings - Fork 11
/
owiener.py
141 lines (115 loc) · 5.75 KB
/
owiener.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
The MIT License (MIT)
Copyright (c) 2019 Nao Yonashiro
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
"""
from typing import Tuple, Iterator, Iterable, Optional
def isqrt(n: int) -> int:
"""
ref: https://en.wikipedia.org/wiki/Integer_square_root
>>> isqrt(289)
17
>>> isqrt(2)
1
>>> isqrt(1000000 ** 2)
1000000
"""
if n == 0:
return 0
# ref: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Rough_estimation
x = 2 ** ((n.bit_length() + 1) // 2)
while True:
y = (x + n // x) // 2
if y >= x:
return x
x = y
def is_perfect_square(n: int) -> bool:
"""
ref: https://hnw.hatenablog.com/entry/20140503
>>> is_perfect_square(100)
True
>>> is_perfect_square(2000000000000000000000000000 ** 2)
True
>>> is_perfect_square(2000000000000000000000000000 ** 2 + 1)
False
"""
sq_mod256 = (1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
if sq_mod256[n & 0xff] == 0:
return False
mt = (
(9, (1,1,0,0,1,0,0,1,0)),
(5, (1,1,0,0,1)),
(7, (1,1,1,0,1,0,0)),
(13, (1,1,0,1,1,0,0,0,0,1,1,0,1)),
(17, (1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1))
)
a = n % (9 * 5 * 7 * 13 * 17)
if any(t[a % m] == 0 for m, t in mt):
return False
return isqrt(n) ** 2 == n
def rational_to_contfrac(x: int, y: int) -> Iterator[int]:
"""
ref: https://en.wikipedia.org/wiki/Euclidean_algorithm#Continued_fractions
>>> list(rational_to_contfrac(4, 11))
[0, 2, 1, 3]
"""
while y:
a = x // y
yield a
x, y = y, x - a * y
def contfrac_to_rational_iter(contfrac: Iterable[int]) -> Iterator[Tuple[int, int]]:
"""
ref: https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf (6)
"""
n0, d0 = 0, 1
n1, d1 = 1, 0
for q in contfrac:
n = q * n1 + n0
d = q * d1 + d0
yield n, d
n0, d0 = n1, d1
n1, d1 = n, d
def convergents_from_contfrac(contfrac: Iterable[int]) -> Iterator[Tuple[int, int]]:
"""
ref: https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf Section.3
"""
n_, d_ = 1, 0
for i, (n, d) in enumerate(contfrac_to_rational_iter(contfrac)):
if i % 2 == 0:
yield n + n_, d + d_
else:
yield n, d
n_, d_ = n, d
def attack(e: int, n: int) -> Optional[int]:
"""
ref: https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/krypto2ss08/shortsecretexponents.pdf Section.4
>>> attack(2621, 8927)
5
>>> attack(6792605526025, 9449868410449)
569
>>> attack(30749686305802061816334591167284030734478031427751495527922388099381921172620569310945418007467306454160014597828390709770861577479329793948103408489494025272834473555854835044153374978554414416305012267643957838998648651100705446875979573675767605387333733876537528353237076626094553367977134079292593746416875606876735717905892280664538346000950343671655257046364067221469807138232820446015769882472160551840052921930357988334306659120253114790638496480092361951536576427295789429197483597859657977832368912534761100269065509351345050758943674651053419982561094432258103614830448382949765459939698951824447818497599, 109966163992903243770643456296093759130737510333736483352345488643432614201030629970207047930115652268531222079508230987041869779760776072105738457123387124961036111210544028669181361694095594938869077306417325203381820822917059651429857093388618818437282624857927551285811542685269229705594166370426152128895901914709902037365652575730201897361139518816164746228733410283595236405985958414491372301878718635708605256444921222945267625853091126691358833453283744166617463257821375566155675868452032401961727814314481343467702299949407935602389342183536222842556906657001984320973035314726867840698884052182976760066141)
4221909016509078129201801236879446760697885220928506696150646938237440992746683409881141451831939190609743447676525325543963362353923989076199470515758399
"""
f_ = rational_to_contfrac(e, n)
for k, dg in convergents_from_contfrac(f_):
edg = e * dg
phi = edg // k
x = n - phi + 1
if x % 2 == 0 and is_perfect_square((x // 2) ** 2 - n):
g = edg - phi * k
return dg // g
return None