-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2D_random_points.py
159 lines (119 loc) · 6.06 KB
/
2D_random_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch, os, logging
from argparse import ArgumentParser
import numpy as np
from matplotlib import pyplot as plt
from trainer import *
from utils import *
from MLPs import *
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter(
"[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s"
)
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
def main(args):
if os.path.exists(args.save_path):
print('Path already exists!')
return 1
os.mkdir(args.save_path)
logger = get_logger(args.save_path+args.logger)
logger.info(args)
# Set the CUDA flag
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info('device is: {}'.format(device))
buf = np.load(args.data_path)
#mask = np.load(args.mask_path)
# ########### generate random mask ###########
image_size = buf['test_data'].shape[1]
ratio = 0.25
mask = []
for i in range(buf['test_data'].shape[0]):
mask_tmp = []
for j in range(args.N_repeat):
idx = torch.randperm(image_size**2)[:int(ratio*image_size**2)]
mask_np_N2 = np.zeros((image_size**2))
mask_np_N2[idx] = 1
mask_np_N2 = mask_np_N2==1
mask_tmp.append(mask_np_N2)
mask.append(np.stack(mask_tmp,0))
mask = np.stack(mask,0)
#np.save('mask_2d_{}_{}_{}_{}.npy'.format(ratio,buf.shape[0],args.N_repeat,buf.shape[1]),mask)
# ###########################################
signals = torch.from_numpy(buf['test_data']/ 255.)
logger.info('################ Simple Encoding ################')
ez = 512
rff_params = [8]
linearf_params = [4]
logf_params = [4.5]
gaussian4_params = [0.006]
linear4_params = [2.5/128]
encoding_methods = ['RFF']*len(rff_params)+['LinF']*len(linearf_params)+['LogF']*len(logf_params)+['Gau']*len(gaussian4_params)+['Tri']*len(linear4_params)
params = rff_params+linearf_params+logf_params+gaussian4_params+linear4_params
print(encoding_methods)
print(params)
for depth in [4,1,0]:
for lr in [5e-3]:
logger.info('######## Network Depth = {}, Learning Rate = {} ########'.format(depth,lr))
for em,param in zip(encoding_methods,params):
ef = encoding_func_2D(em,[param,ez])
time_,trn_psnr_,tst_psnr_,rec_ = train_random_simple_2D(signals,ef,mask=mask,N_repeat=args.N_repeat,lr=lr,epochs=2000,depth=depth,device=device,logger=None)
file_name = 'RD{}{}'.format(depth,em)
if args.save_flag:
# np.save(args.save_path+file_name+'_rec.npy',rec_)
# np.save(args.save_path+file_name+'_time.npy',time_)
# np.save(args.save_path+file_name+'_trn.npy',trn_psnr_)
# np.save(args.save_path+file_name+'_tst.npy',tst_psnr_)
for i in range(signals.shape[0]):
plt.imshow(rec_[i])
plt.axis('off')
plt.savefig(args.save_path+'I{}'.format(i)+file_name+'{}.pdf'.format(tst_psnr_[i,-1]), bbox_inches='tight', pad_inches=0)
logger.info('embedding method:{}, param:{}, psnr:{}, std:{}, time:{}.'.format(em,param,np.mean(tst_psnr_[:,:]),np.std(tst_psnr_[:,:]),np.mean(time_[:,:])))
logger.info('################ Complex Encoding ################')
ez = 256
rff_params = [30]
linearf_params = [4.5]
logf_params = [6]
gaussian_params = [0.005]
linear_params = [2.5/256]
encoding_methods = ['RFF']*len(rff_params)+['LinF']*len(linearf_params)+['LogF']*len(logf_params)+['Gau']*len(gaussian_params)+['Tri']*len(linear_params)
params = rff_params+linearf_params+logf_params+gaussian_params+linear_params
for depth in [0,1]:
for lr in [1e-1]:
logger.info('######## Network Depth = {}, Learning Rate = {} ########'.format(depth,lr))
for em,param in zip(encoding_methods,params):
ef = encoding_func_1D(em,[param,ez])
bl = blending_func_2D(ef)
time_,trn_psnr_,tst_psnr_,rec_ = train_index_blend_kron_2D(signals,bl,ef,mask=mask,N_repeat=args.N_repeat,lr=lr,epochs=2000,depth=depth,device=device,logger=None)
file_name = 'RKD{}{}'.format(depth,em)
if args.save_flag:
# np.save(args.save_path+file_name+'_rec.npy',rec_)
# np.save(args.save_path+file_name+'_time.npy',time_)
# np.save(args.save_path+file_name+'_trn.npy',trn_psnr_)
# np.save(args.save_path+file_name+'_tst.npy',tst_psnr_)
for i in range(signals.shape[0]):
plt.imshow(rec_[i])
plt.axis('off')
plt.savefig(args.save_path+'I{}'.format(i)+file_name+'{}.pdf'.format(tst_psnr_[i,-1]), bbox_inches='tight', pad_inches=0)
logger.info('embedding method:{}, param:{}, psnr:{}, std:{}, time:{}.'.format(em,param,np.mean(tst_psnr_[:,:]),np.std(tst_psnr_[:,:]),np.mean(time_[:,:])))
if __name__ == "__main__":
torch.set_default_dtype(torch.float32)
torch.manual_seed(20220222)
np.random.seed(20220222)
parser = ArgumentParser()
parser.add_argument("--data_path", type=str, default="data_div2k.npz")
parser.add_argument("--mask_path", type=str, default="mask_2d_0.25_16_1_512.npy")
parser.add_argument("--N_repeat", type=int, default=1)
parser.add_argument("--save_path", type=str, default="2D_random_points/")
parser.add_argument("--logger", type=str, default="log.log")
parser.add_argument("--save_flag", type=int, default=0, choices=[0, 1])
args = parser.parse_args()
main(args)