forked from CakeML/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcandle_compute.ml
249 lines (223 loc) · 10.5 KB
/
candle_compute.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
(* ========================================================================== *)
(* A Verified Compute Primitive for Candle. *)
(* *)
(* This theory defines the types and functions needed for the kernel built-in *)
(* call-by-value interpreter of compute expressions (cexp). compute expects *)
(* a certain set of characteristic equations for :num arithmetic as well as *)
(* auxiliary constants (e.g., COND for if-then-else) occurring in the *)
(* characterizing equations. *)
(* ========================================================================== *)
needs "define.ml";;
(* -------------------------------------------------------------------------- *)
(* Definition of cexps (compute expressions) and operations on cexps. *)
(* -------------------------------------------------------------------------- *)
let cexp_INDUCT, cexp_RECURSION = define_type
"cexp = Cexp_num num | Cexp_pair cexp cexp";;
let cexp_add_def = define
`(Cexp_add (Cexp_num m) (Cexp_num n) = Cexp_num (m + n)) /\
(Cexp_add (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num m) /\
(Cexp_add (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num n) /\
(Cexp_add (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_sub_def = define
`(Cexp_sub (Cexp_num m) (Cexp_num n) = Cexp_num (m - n)) /\
(Cexp_sub (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num m) /\
(Cexp_sub (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num 0) /\
(Cexp_sub (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_mul_def = define
`(Cexp_mul (Cexp_num m) (Cexp_num n) = Cexp_num (m * n)) /\
(Cexp_mul (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num 0) /\
(Cexp_mul (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num 0) /\
(Cexp_mul (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_div_def = define
`(Cexp_div (Cexp_num m) (Cexp_num n) = Cexp_num (m DIV n)) /\
(Cexp_div (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num 0) /\
(Cexp_div (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num 0) /\
(Cexp_div (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_mod_def = define
`(Cexp_mod (Cexp_num m) (Cexp_num n) = Cexp_num (m MOD n)) /\
(Cexp_mod (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num m) /\
(Cexp_mod (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num 0) /\
(Cexp_mod (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_less_def = define
`(Cexp_less (Cexp_num m) (Cexp_num n) =
Cexp_num (if m < n then SUC 0 else 0)) /\
(Cexp_less (Cexp_num m) (Cexp_pair p1 q1) = Cexp_num 0) /\
(Cexp_less (Cexp_pair p1 q1) (Cexp_num n) = Cexp_num 0) /\
(Cexp_less (Cexp_pair p1 q1) (Cexp_pair p2 q2) = Cexp_num 0)`;;
let cexp_if_def = define
`(Cexp_if (Cexp_num (SUC m)) (p1: cexp) (q1: cexp) = p1) /\
(Cexp_if (Cexp_pair p2 q2) p1 q1 = p1) /\
(Cexp_if (Cexp_num 0) p1 q1 = q1)`;;
let cexp_fst_def = define
`(Cexp_fst (Cexp_pair p1 q1) = p1) /\
(Cexp_fst (Cexp_num m) = Cexp_num 0)`;;
let cexp_snd_def = define
`(Cexp_snd (Cexp_pair p1 q1) = q1) /\
(Cexp_snd (Cexp_num m) = Cexp_num 0)`;;
let cexp_ispair_def = define
`(Cexp_ispair (Cexp_pair p1 q1) = Cexp_num (SUC 0)) /\
(Cexp_ispair (Cexp_num m) = Cexp_num 0)`;;
let cexp_eq_def = define
`Cexp_eq (p1:cexp) q1 = Cexp_num (if p1 = q1 then SUC 0 else 0)`;;
(* -------------------------------------------------------------------------- *)
(* Prepare the list of characteristic equations in the way compute wants it. *)
(* The theorems need be exactly those below (if they are only alpha equiv. *)
(* then compute_init will crash with an unhelpful error). They also need to *)
(* be fed to compute_init in exactly this order. *)
(* -------------------------------------------------------------------------- *)
let COMPUTE_INIT_THMS =
let [COND_TRUE; COND_FALSE] = (CONJUNCTS o prove) (
`COND T (m:num) (n:num) = m /\
COND F m n = n`,
REWRITE_TAC []) in
let [IF_TRUE; IF_FALSE] = (CONJUNCTS o prove) (
`COND T (x:bool) (y:bool) = x /\
COND F x y = y`,
REWRITE_TAC []) in
let NUMERAL_EQ = SPEC_ALL NUMERAL in
let BIT0_EQ = SPEC_ALL BIT0 in
let BIT1_EQ = SPEC_ALL BIT1 in
let [ADD_EQ1; ADD_EQ2] = (CONJUNCTS o prove) (
`0 + n = n /\
(SUC m) + n = SUC (m + n)`,
REWRITE_TAC [ADD]) in
let [SUB_EQ1; SUB_EQ2; SUB_EQ3] = (CONJUNCTS o prove) (
`0 - n = 0 /\
m - 0 = m /\
(SUC m) - (SUC n) = m - n`,
REWRITE_TAC [SUB_0; SUB_PRESUC; SUB_SUC]) in
let [MUL_EQ1; MUL_EQ2] = (CONJUNCTS o prove) (
`0 * n = 0 /\
(SUC m) * n = n + (m * n)`,
REWRITE_TAC [MULT_CLAUSES; ADD_SYM]) in
let SUB_LEMMA = prove (
`n <= m ==> (m = n + k <=> m - n = k)`,
STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC [ADD_SUB; ADD_SUB2] THEN
POP_ASSUM (SUBST_ALL_TAC o SYM) THEN
RULE_ASSUM_TAC (REWRITE_RULE [LE_EXISTS]) THEN
POP_ASSUM (CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC [EQ_ADD_LCANCEL; ADD_SYM; ADD_SUB]) in
let DIV_RECURSIVE = prove (
`m DIV n = if n = 0 then 0 else if m < n then 0 else SUC ((m - n) DIV n)`,
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC [DIV_ZERO] THEN
RULE_ASSUM_TAC (REWRITE_RULE [GSYM LT_NZ]) THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [DIV_LT] THEN
RULE_ASSUM_TAC (REWRITE_RULE [NOT_LT; LE_LT]) THEN
POP_ASSUM DISJ_CASES_TAC THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
ASM_SIMP_TAC [SUB_REFL; DIV_0; GSYM ONE; DIV_REFL; GSYM LT_NZ] THEN
MATCH_MP_TAC DIV_UNIQ THEN
ASM_SIMP_TAC [RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
ONCE_REWRITE_TAC [GSYM RIGHT_ADD_DISTRIB] THEN
EXISTS_TAC `(m - n) MOD n` THEN
ASM_SIMP_TAC [MOD_LT_EQ_LT; GSYM ADD_ASSOC] THEN
ONCE_REWRITE_TAC [ADD_SYM] THEN
ASM_SIMP_TAC [GSYM ADD_ASSOC; LT_IMP_LE; SUB_LEMMA; DIVISION_SIMP;
ADD_SYM]) in
let MOD_RECURSIVE = prove (
`m MOD n = if n = 0 then m else if m < n then m else (m - n) MOD n`,
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC [MOD_ZERO] THEN
RULE_ASSUM_TAC (REWRITE_RULE [GSYM LT_NZ]) THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [MOD_LT] THEN
RULE_ASSUM_TAC (REWRITE_RULE [NOT_LT]) THEN
MATCH_MP_TAC MOD_EQ THEN
EXISTS_TAC `1` THEN ASM_SIMP_TAC [MULT_CLAUSES; SUB_ADD]) in
let [LESS_EQ1; LESS_EQ2; LESS_EQ3] = (CONJUNCTS o prove) (
`(m < 0 <=> F) /\
(0 < SUC n <=> T) /\
(SUC m < SUC n <=> (m < n))`,
REWRITE_TAC [LT_SUC; LT_0; LT]) in
let [NUMEQ1; NUMEQ2; NUMEQ3; NUMEQ4] = (CONJUNCTS o prove) (
`(0 = 0 <=> T) /\
(0 = SUC n <=> F) /\
(SUC m = 0 <=> F) /\
(SUC m = SUC n <=> m = n)`,
REWRITE_TAC [NOT_SUC; SUC_INJ]) in
let [PAIR_EQ1; PAIR_EQ2; PAIR_EQ3; PAIR_EQ4] = (CONJUNCTS o prove) (
`(Cexp_pair p1 q1 = Cexp_pair p2 q2 <=> if p1 = p2 then q1 = q2 else F) /\
(Cexp_num m = Cexp_num n <=> m = n) /\
(Cexp_num m = Cexp_pair p1 q1 <=> F) /\
(Cexp_pair p1 q1 = Cexp_num n <=> F)`,
REWRITE_TAC [injectivity "cexp"; distinctness "cexp"] THEN
COND_CASES_TAC THEN REWRITE_TAC []) in
let LET_EQ = prove (
`LET (f:cexp->cexp) (p1:cexp) = f p1`,
REWRITE_TAC [LET_DEF]) in
[COND_TRUE; COND_FALSE; IF_TRUE; IF_FALSE; NUMERAL_EQ; BIT0_EQ; BIT1_EQ;
ADD_EQ1; ADD_EQ2; SUB_EQ1; SUB_EQ2; SUB_EQ3; MUL_EQ1; MUL_EQ2; DIV_RECURSIVE;
MOD_RECURSIVE; LESS_EQ1; LESS_EQ2; LESS_EQ3; NUMEQ1; NUMEQ2; NUMEQ3; NUMEQ4;
] @
CONJUNCTS cexp_add_def @
CONJUNCTS cexp_sub_def @
CONJUNCTS cexp_mul_def @
CONJUNCTS cexp_div_def @
CONJUNCTS cexp_mod_def @
CONJUNCTS cexp_less_def @
CONJUNCTS cexp_if_def @
CONJUNCTS cexp_fst_def @
CONJUNCTS cexp_snd_def @
CONJUNCTS cexp_ispair_def @
[cexp_eq_def; PAIR_EQ1; PAIR_EQ2; PAIR_EQ3; PAIR_EQ4; LET_EQ]
;;
(* -------------------------------------------------------------------------- *)
(* compute takes a list defn_eqs of _compute equations_ and a term tm of type *)
(* :cexp, and returns a theorem |- tm = tm' where tm' is a fully reduced *)
(* version of tm. *)
(* *)
(* A _compute equation_ is an equation c x1 ... xN = e, where c is a constant,*)
(* and x1 ... xN are variables of type :cexp, and e is closed under x1 ... xN.*)
(* *)
(* The equations in defn_eqs and the term tm may only contain constants that *)
(* have compute equations associated with them in the list. *)
(* -------------------------------------------------------------------------- *)
let compute defn_eqs tm = Kernel.compute (COMPUTE_INIT_THMS, defn_eqs) tm;;
(* -------------------------------------------------------------------------- *)
(* We'll install some overloads to make it easier to build cexps. *)
(* -------------------------------------------------------------------------- *)
make_overloadable "lessc" `:A->A->A`;;
make_overloadable "divc" `:A->A->A`;;
make_overloadable "modc" `:A->A->A`;;
make_overloadable "ifc" `:A->A->A->A`;;
make_overloadable "fstc" `:A->A`;;
make_overloadable "ispairc" `:A->A`;;
make_overloadable "sndc" `:A->A`;;
make_overloadable "numc" `:num->A`;;
make_overloadable "pairc" `:A->A->A`;;
make_overloadable "eqc" `:A->A->A`;;
parse_as_infix("lessc",(12,"right"));;
parse_as_infix("divc",(22,"left"));;
parse_as_infix("modc",(22,"left"));;
parse_as_infix("eqc",(12,"right"));;
do_list overload_interface
["+",`Cexp_add`;
"-",`Cexp_sub`;
"*",`Cexp_mul`;
"lessc",`Cexp_less`;
"divc",`Cexp_div`;
"modc",`Cexp_mod`;
"ifc", `Cexp_if`;
"fstc", `Cexp_fst`;
"sndc", `Cexp_snd`;
"numc", `Cexp_num`;
"ispairc", `Cexp_ispair`;
"pairc", `Cexp_pair`;
"eqc", `Cexp_eq`;
];;
(* -------------------------------------------------------------------------- *)
(* Recursive definitions of cexps. *)
(* -------------------------------------------------------------------------- *)
let cexp_if = prove (
`Cexp_if n p q = if ~(n = numc 0) then p else q`,
COND_CASES_TAC THEN ASM_REWRITE_TAC [cexp_if_def; ONE] THEN
POP_ASSUM MP_TAC THEN
STRUCT_CASES_TAC (SPEC `n:cexp` (cases "cexp")) THEN
SIMP_TAC [injectivity "cexp"; ONE] THEN
STRUCT_CASES_TAC (SPEC `a:num` num_CASES) THEN
REWRITE_TAC [NOT_SUC; SUC_INJ; cexp_if_def]);;
let cexp_size_def = define
`(cexp_size (numc n) = 1) /\
(cexp_size (pairc p q) = 1 + cexp_size p + cexp_size q)`;;
let cexp_sum_size_def = define
`(cexp_sum_size (numc n) = n) /\
(cexp_sum_size (pairc p q) = 1 + cexp_sum_size p + cexp_sum_size q)`;;