-
Notifications
You must be signed in to change notification settings - Fork 0
/
serving_client_generate_pascal.py
98 lines (75 loc) · 3.48 KB
/
serving_client_generate_pascal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from __future__ import print_function
# This is a placeholder for a Google-internal import.
from grpc.beta import implementations
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import label_map_util as lmu
import glob
import numpy as np
import scipy
import tensorflow as tf
from pascal_voc_writer import Writer
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
# Adding flags for script
tf.app.flags.DEFINE_string('server', 'localhost:9000',
'PredictionService host:port')
tf.app.flags.DEFINE_string('input_image', '', 'path to image in JPEG format')
tf.app.flags.DEFINE_string('path_to_labels', '', 'path to labels')
FLAGS = tf.app.flags.FLAGS
# Minimum treshold of certainty for boxes to be included, in percentage.
min_score_tresh = 0.5
# Create stub
host, port = FLAGS.server.split(':')
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# Create prediction request object
request = predict_pb2.PredictRequest()
# Specify model name (must be the same as when the TensorFlow serving serving was started)
request.model_spec.name = 'model_test'
# Initalize prediction
# Specify signature name (should be the same as specified when exporting model)
request.model_spec.signature_name = ""
images = glob.glob(FLAGS.input_image + "/*.jpg")
for image in images:
# Reading image from given path
img = scipy.misc.imread(image)
# Reading the resolution of said image.
height, width, channels = img.shape
# Create Pascal VOC writer.
writer = Writer(image, width, height)
request.inputs['inputs'].CopyFrom(tf.contrib.util.make_tensor_proto(img, shape=[1] + list(img.shape)))
# Call the prediction server
result = stub.Predict(request, 180.0) # 10 secs timeout
# Plot boxes on the input image
category_index = lmu.create_category_index_from_labelmap(FLAGS.path_to_labels, False)
boxes = result.outputs['detection_boxes'].float_val
classes = result.outputs['detection_classes'].float_val
scores = result.outputs['detection_scores'].float_val
# Format output properly before converting to Pascal VOC
boxes = np.reshape(boxes,[100,4])
classes = np.squeeze(classes).astype(np.int32)
scores = np.squeeze(scores)
# Iterate through each box predicted by the served model
for i in range(boxes.shape[0]):
# Discard any boxas under 50% certainty
if scores[i] > min_score_tresh:
# Format box output
box = tuple(boxes[i].tolist())
# Fetch "class_name", also known as label.
if classes[i] in category_index.keys():
class_name = category_index[classes[i]]['name']
else:
class_name = 'N/A'
# Fetch x and y positions of box-corners in percentage.
ymin_percent, xmin_percent, ymax_percent, xmax_percent = box
# Calculate the pixel the box corners are positioned at.
ymin = int(ymin_percent * height)
ymax = int(ymax_percent * height)
xmin = int(xmin_percent * width)
xmax = int(xmax_percent * width)
# Add output to Pascal VOC object.
writer.addObject(class_name, xmin, ymin, xmax, ymax)
# Define the XML path of the new Pascal VOC file.
xml_path = image.rstrip('.jpg') + '.xml'
# Save the XML in Pascal VOC format.
writer.save(xml_path)