-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathstream.go
656 lines (583 loc) · 19.9 KB
/
stream.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/*
* Copyright 2018 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"context"
"sort"
"sync"
"sync/atomic"
"time"
humanize "github.com/dustin/go-humanize"
"github.com/outcaste-io/badger/v4/pb"
"github.com/outcaste-io/badger/v4/table"
"github.com/outcaste-io/badger/v4/y"
"github.com/outcaste-io/ristretto/z"
"github.com/pkg/errors"
)
const batchSize = 16 << 20 // 16 MB
// maxStreamSize is the maximum allowed size of a stream batch. This is a soft limit
// as a single list that is still over the limit will have to be sent as is since it
// cannot be split further. This limit prevents the framework from creating batches
// so big that sending them causes issues (e.g running into the max size gRPC limit).
var maxStreamSize = uint64(100 << 20) // 100MB
// Stream provides a framework to concurrently iterate over a snapshot of Badger, pick up
// key-values, batch them up and call Send. Stream does concurrent iteration over many smaller key
// ranges. It does NOT send keys in lexicographical sorted order. To get keys in sorted
// order, use Iterator.
type Stream struct {
// Prefix to only iterate over certain range of keys. If set to nil (default), Stream would
// iterate over the entire DB.
Prefix []byte
// Number of goroutines to use for iterating over key ranges. Defaults to 8.
NumGo int
// Badger would produce log entries in Infof to indicate the progress of Stream. LogPrefix can
// be used to help differentiate them from other activities. Default is "Badger.Stream".
LogPrefix string
// ChooseKey is invoked each time a new key is encountered. Note that this is not called
// on every version of the value, only the first encountered version (i.e. the highest version
// of the value a key has). ChooseKey can be left nil to select all keys.
//
// Note: Calls to ChooseKey are concurrent.
ChooseKey func(item *Item) bool
// KeyToList, similar to ChooseKey, is only invoked on the highest version of the value. It
// is upto the caller to iterate over the versions and generate zero, one or more KVs. It
// is expected that the user would advance the iterator to go through the versions of the
// values. However, the user MUST immediately return from this function on the first encounter
// with a mismatching key. See example usage in ToList function. Can be left nil to use ToList
// function by default.
//
// KeyToList has access to z.Allocator accessible via stream.Allocator(itr.ThreadId). This
// allocator can be used to allocate KVs, to decrease the memory pressure on Go GC. Stream
// framework takes care of releasing those resources after calling Send. AllocRef does
// NOT need to be set in the returned KVList, as Stream framework would ignore that field,
// instead using the allocator assigned to that thread id.
//
// Note: Calls to KeyToList are concurrent.
KeyToList func(key []byte, itr *Iterator) (*pb.KVList, error)
// This is the method where Stream sends the final output. All calls to Send are done by a
// single goroutine, i.e. logic within Send method can expect single threaded execution.
Send func(buf *z.Buffer) error
// Read data above the sinceTs. All keys with version =< sinceTs will be ignored.
SinceTs uint64
// FullCopy should be set to true only when encryption mode is same for sender and receiver.
FullCopy bool
readTs uint64
db *DB
rangeCh chan keyRange
kvChan chan *z.Buffer
nextStreamId uint32
doneMarkers bool
scanned uint64 // used to estimate the ETA for data scan.
numProducers int32
}
// SendDoneMarkers when true would send out done markers on the stream. False by default.
func (st *Stream) SendDoneMarkers(done bool) {
st.doneMarkers = done
}
// ToList is a default implementation of KeyToList. It picks up all valid versions of the key,
// skipping over deleted or expired keys.
func (st *Stream) ToList(key []byte, itr *Iterator) (*pb.KVList, error) {
a := itr.Alloc
ka := a.Copy(key)
list := &pb.KVList{}
for ; itr.Valid(); itr.Next() {
item := itr.Item()
if !bytes.Equal(key, item.Key()) {
// Break out on the first encounter with another key.
break
}
kv := y.NewKV(a)
kv.Key = ka
if err := item.Value(func(val []byte) error {
kv.Value = a.Copy(val)
return nil
}); err != nil {
return nil, err
}
kv.Version = item.Version()
// As we do full copy, we need to transmit only if it is a delete key or not.
kv.Meta = []byte{item.meta & bitDelete}
kv.UserMeta = a.Copy([]byte{item.UserMeta()})
list.Kv = append(list.Kv, kv)
if st.db.opt.NumVersionsToKeep == 1 {
break
}
if item.DiscardEarlierVersions() {
break
}
if item.IsDeletedOrExpired() {
// We do a FullCopy in stream. It might happen that tables from L6 contain K(version=1),
// while the table at L4 that was not copied contains K(version=2) with delete mark.
// Hence, we need to send the deleted or expired item too.
break
}
}
return list, nil
}
// keyRange is [start, end), including start, excluding end. Do ensure that the start,
// end byte slices are owned by keyRange struct.
func (st *Stream) produceRanges(ctx context.Context) {
ranges := st.db.Ranges(st.Prefix, 16)
y.AssertTrue(len(ranges) > 0)
y.AssertTrue(ranges[0].left == nil)
y.AssertTrue(ranges[len(ranges)-1].right == nil)
st.db.opt.Infof("Number of ranges found: %d\n", len(ranges))
// Sort in descending order of size.
sort.Slice(ranges, func(i, j int) bool {
return ranges[i].size > ranges[j].size
})
for i, r := range ranges {
st.rangeCh <- *r
st.db.opt.Infof("Sent range %d for iteration: [%x, %x) of size: %s\n",
i, r.left, r.right, humanize.IBytes(uint64(r.size)))
}
close(st.rangeCh)
}
// produceKVs picks up ranges from rangeCh, generates KV lists and sends them to kvChan.
func (st *Stream) produceKVs(ctx context.Context, itr *Iterator) error {
atomic.AddInt32(&st.numProducers, 1)
defer atomic.AddInt32(&st.numProducers, -1)
// produceKVs is running iterate serially. So, we can define the outList here.
outList := z.NewBuffer(2*batchSize, "Stream.ProduceKVs")
defer func() {
// The outList variable changes. So, we need to evaluate the variable in the defer. DO NOT
// call `defer outList.Release()`.
_ = outList.Release()
}()
iterate := func(kr keyRange) error {
itr.Alloc = z.NewAllocator(1<<20, "Stream.Iterate")
defer itr.Alloc.Release()
// This unique stream id is used to identify all the keys from this iteration.
streamId := atomic.AddUint32(&st.nextStreamId, 1)
var scanned int
sendIt := func() error {
select {
case st.kvChan <- outList:
outList = z.NewBuffer(2*batchSize, "Stream.ProduceKVs")
atomic.AddUint64(&st.scanned, uint64(itr.scanned-scanned))
scanned = itr.scanned
case <-ctx.Done():
return ctx.Err()
}
return nil
}
var prevKey []byte
for itr.Seek(kr.left); itr.Valid(); {
// it.Valid would only return true for keys with the provided Prefix in iterOpts.
item := itr.Item()
if bytes.Equal(item.Key(), prevKey) {
itr.Next()
continue
}
prevKey = append(prevKey[:0], item.Key()...)
// Check if we reached the end of the key range.
if len(kr.right) > 0 && bytes.Compare(item.Key(), kr.right) >= 0 {
break
}
// Check if we should pick this key.
if st.ChooseKey != nil && !st.ChooseKey(item) {
continue
}
// Now convert to key value.
itr.Alloc.Reset()
list, err := st.KeyToList(item.KeyCopy(nil), itr)
if err != nil {
st.db.opt.Warningf("While reading key: %x, got error: %v", item.Key(), err)
continue
}
if list == nil || len(list.Kv) == 0 {
continue
}
for _, kv := range list.Kv {
kv.StreamId = streamId
KVToBuffer(kv, outList)
if outList.LenNoPadding() < batchSize {
continue
}
if err := sendIt(); err != nil {
return err
}
}
}
// Mark the stream as done.
if st.doneMarkers {
kv := &pb.KV{
StreamId: streamId,
StreamDone: true,
}
KVToBuffer(kv, outList)
}
return sendIt()
}
for {
select {
case kr, ok := <-st.rangeCh:
if !ok {
// Done with the keys.
return nil
}
if err := iterate(kr); err != nil {
return err
}
case <-ctx.Done():
return ctx.Err()
}
}
}
func (st *Stream) streamKVs(ctx context.Context) error {
onDiskSize, uncompressedSize := st.db.EstimateSize(st.Prefix)
// Manish has seen uncompressed size to be in 20% error margin.
uncompressedSize = uint64(float64(uncompressedSize) * 1.2)
st.db.opt.Infof("%s Streaming about %s of uncompressed data (%s on disk)\n",
st.LogPrefix, humanize.IBytes(uncompressedSize), humanize.IBytes(onDiskSize))
tickerDur := 5 * time.Second
var bytesSent uint64
t := time.NewTicker(tickerDur)
defer t.Stop()
now := time.Now()
sendBatch := func(batch *z.Buffer) error {
defer func() {
_ = batch.Release()
}()
sz := uint64(batch.LenNoPadding())
if sz == 0 {
return nil
}
bytesSent += sz
// st.db.opt.Infof("%s Sending batch of size: %s.\n", st.LogPrefix, humanize.IBytes(sz))
if err := st.Send(batch); err != nil {
st.db.opt.Warningf("Error while sending: %v\n", err)
return err
}
return nil
}
slurp := func(batch *z.Buffer) error {
loop:
for {
// Send the batch immediately if it already exceeds the maximum allowed size.
// If the size of the batch exceeds maxStreamSize, break from the loop to
// avoid creating a batch that is so big that certain limits are reached.
if batch.LenNoPadding() > int(maxStreamSize) {
break loop
}
select {
case kvs, ok := <-st.kvChan:
if !ok {
break loop
}
y.AssertTrue(kvs != nil)
y.Check2(batch.Write(kvs.Bytes()))
y.Check(kvs.Release())
default:
break loop
}
}
return sendBatch(batch)
} // end of slurp.
writeRate := y.NewRateMonitor(20)
scanRate := y.NewRateMonitor(20)
outer:
for {
var batch *z.Buffer
select {
case <-ctx.Done():
return ctx.Err()
case <-t.C:
// Instead of calculating speed over the entire lifetime, we average the speed over
// ticker duration.
writeRate.Capture(bytesSent)
scanned := atomic.LoadUint64(&st.scanned)
scanRate.Capture(scanned)
numProducers := atomic.LoadInt32(&st.numProducers)
st.db.opt.Infof("%s [%s] Scan (%d): ~%s/%s at %s/sec. Sent: %s at %s/sec."+
" jemalloc: %s\n",
st.LogPrefix, y.FixedDuration(time.Since(now)), numProducers,
y.IBytesToString(scanned, 1), humanize.IBytes(uncompressedSize),
humanize.IBytes(scanRate.Rate()),
y.IBytesToString(bytesSent, 1), humanize.IBytes(writeRate.Rate()),
humanize.IBytes(uint64(z.NumAllocBytes())))
case kvs, ok := <-st.kvChan:
if !ok {
break outer
}
y.AssertTrue(kvs != nil)
batch = kvs
// Otherwise, slurp more keys into this batch.
if err := slurp(batch); err != nil {
return err
}
}
}
st.db.opt.Infof("%s Sent data of size %s\n", st.LogPrefix, humanize.IBytes(bytesSent))
return nil
}
func (st *Stream) copyTablesOver(ctx context.Context, tableMatrix [][]*table.Table) error {
// TODO: See if making this concurrent would be helpful. Most likely it won't.
// But, if it does work, then most like <3 goroutines might be sufficient.
infof := st.db.opt.Infof
// Make a copy of the manifest so that we don't have race condition.
manifest := st.db.manifest.manifest.clone()
dataKeys := make(map[uint64]struct{})
// Iterate in reverse order so that the receiver gets the bottommost level first.
for i := len(tableMatrix) - 1; i >= 0; i-- {
level := i
tables := tableMatrix[i]
for _, t := range tables {
// This table can be picked for copying directly.
out := z.NewBuffer(int(t.Size())+1024, "Stream.Table")
if dk := t.DataKey(); dk != nil {
y.AssertTrue(dk.KeyId != 0)
// If we have a legit data key, send it over so the table can be decrypted. The same
// data key could have been used to encrypt many tables. Avoid sending it
// repeatedly.
if _, sent := dataKeys[dk.KeyId]; !sent {
infof("Sending data key with ID: %d\n", dk.KeyId)
val, err := dk.Marshal()
y.Check(err)
// This would go to key registry in destination.
kv := &pb.KV{
Value: val,
Kind: pb.KV_DATA_KEY,
}
KVToBuffer(kv, out)
dataKeys[dk.KeyId] = struct{}{}
}
}
infof("Sending table ID: %d at level: %d. Size: %s\n",
t.ID(), level, humanize.IBytes(uint64(t.Size())))
tableManifest := manifest.Tables[t.ID()]
change := pb.ManifestChange{
Op: pb.ManifestChange_CREATE,
Level: uint32(level),
KeyId: tableManifest.KeyID,
// Hard coding it, since we're supporting only AES for now.
EncryptionAlgo: pb.EncryptionAlgo_aes,
Compression: uint32(tableManifest.Compression),
}
buf, err := change.Marshal()
y.Check(err)
// We send the table along with level to the destination, so they'd know where to
// place the tables. We'd send all the tables first, before we start streaming. So, the
// destination DB would write streamed keys one level above.
kv := &pb.KV{
// Key can be used for MANIFEST.
Key: buf,
Value: t.Data,
Kind: pb.KV_FILE,
}
KVToBuffer(kv, out)
select {
case st.kvChan <- out:
case <-ctx.Done():
_ = out.Release()
return ctx.Err()
}
}
}
return nil
}
// Orchestrate runs Stream. It picks up ranges from the SSTables, then runs NumGo number of
// goroutines to iterate over these ranges and batch up KVs in lists. It concurrently runs a single
// goroutine to pick these lists, batch them up further and send to Output.Send. Orchestrate also
// spits logs out to Infof, using provided LogPrefix. Note that all calls to Output.Send
// are serial. In case any of these steps encounter an error, Orchestrate would stop execution and
// return that error. Orchestrate can be called multiple times, but in serial order.
func (st *Stream) Orchestrate(ctx context.Context) error {
if st.FullCopy {
if st.SinceTs != 0 || st.ChooseKey != nil && st.KeyToList != nil {
panic("Got invalid stream options when doing full copy")
}
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
st.rangeCh = make(chan keyRange, 3) // Contains keys for posting lists.
// kvChan should only have a small capacity to ensure that we don't buffer up too much data if
// sending is slow. Page size is set to 4MB, which is used to lazily cap the size of each
// KVList. To get 128MB buffer, we can set the channel size to 32.
st.kvChan = make(chan *z.Buffer, 32)
if st.KeyToList == nil {
st.KeyToList = st.ToList
}
// Pick up key-values from kvChan and send to stream.
kvErr := make(chan error, 1)
go func() {
// Picks up KV lists from kvChan, and sends them to Output.
err := st.streamKVs(ctx)
if err != nil {
cancel() // Stop all the go routines.
}
kvErr <- err
}()
// Pick all relevant tables from levels. We'd use this to copy them over,
// or generate iterators from them.
memTables, decr := st.db.getMemTables()
defer decr()
opts := DefaultIteratorOptions
opts.Prefix = st.Prefix
opts.SinceTs = st.SinceTs
tableMatrix := st.db.lc.getTables(&opts)
defer func() {
for _, tables := range tableMatrix {
for _, t := range tables {
_ = t.DecrRef()
}
}
}()
y.AssertTrue(len(tableMatrix) == st.db.opt.MaxLevels)
infof := st.db.opt.Infof
copyTables := func() error {
// Figure out which tables we can copy. Only choose from the last 2 levels.
// Say last level has data of size 100. Given a 10x level multiplier and
// assuming the tree is balanced, second last level would have 10, and the
// third last level would have 1. The third last level would only have 1%
// of the data of the last level. It's OK for us to stop there and just
// stream it, instead of trying to copy over those tables too. When we
// copy over tables to Level i, we can't stream any data to level i, i+1,
// and so on. The stream has to create tables at level i-1, so there can be
// overlap between the tables at i-1 and i.
// Let's pick the tables which can be fully copied over from last level.
threshold := len(tableMatrix) - 2
toCopy := make([][]*table.Table, len(tableMatrix))
var numCopy, numStream int
for lev, tables := range tableMatrix {
// We stream only the data in the two bottommost levels.
if lev < threshold {
numStream += len(tables)
continue
}
var rem []*table.Table
cp := tables[:0]
for _, t := range tables {
// We can only copy over those tables that satisfy following conditions:
// - All the keys have version less than st.readTs
// - st.Prefix fully covers the table
if t.MaxVersion() > st.readTs || !t.CoveredByPrefix(st.Prefix) {
rem = append(rem, t)
continue
}
cp = append(cp, t)
}
toCopy[lev] = cp // Pick tables to copy.
tableMatrix[lev] = rem // Keep remaining for streaming.
numCopy += len(cp)
numStream += len(rem)
}
infof("Num tables to copy: %d. Num to stream: %d\n", numCopy, numStream)
return st.copyTablesOver(ctx, toCopy)
}
if st.FullCopy {
// As of now, we don't handle the non-zero SinceTs.
if err := copyTables(); err != nil {
return errors.Wrap(err, "while copying tables")
}
}
txn := st.db.NewReadTxn(st.readTs)
defer txn.Discard()
newIterator := func(threadId int) *Iterator {
var itrs []y.Iterator
for _, mt := range memTables {
itrs = append(itrs, mt.NewUniIterator(false))
}
if tables := tableMatrix[0]; len(tables) > 0 {
itrs = append(itrs, iteratorsReversed(tables, 0)...)
}
for _, tables := range tableMatrix[1:] {
if len(tables) == 0 {
continue
}
itrs = append(itrs, table.NewConcatIterator(tables, 0))
}
opt := DefaultIteratorOptions
opt.AllVersions = true
opt.Prefix = st.Prefix
opt.PrefetchValues = false
opt.SinceTs = st.SinceTs
res := &Iterator{
txn: txn,
iitr: table.NewMergeIterator(itrs, false),
opt: opt,
readTs: txn.readTs,
ThreadId: threadId,
}
return res
}
// Picks up ranges from Badger, and sends them to rangeCh.
// Just for simplicity, we'd consider all the tables for range production.
go st.produceRanges(ctx)
errCh := make(chan error, st.NumGo) // Stores error by consumeKeys.
var wg sync.WaitGroup
for i := 0; i < st.NumGo; i++ {
wg.Add(1)
go func(threadId int) {
defer wg.Done()
// Picks up ranges from rangeCh, generates KV lists, and sends them to kvChan.
itr := newIterator(threadId)
defer itr.Close()
if err := st.produceKVs(ctx, itr); err != nil {
select {
case errCh <- err:
default:
}
}
}(i)
}
wg.Wait() // Wait for produceKVs to be over.
close(st.kvChan) // Now we can close kvChan.
defer func() {
// If due to some error, we have buffers left in kvChan, we should release them.
for buf := range st.kvChan {
_ = buf.Release()
}
}()
select {
case err := <-errCh: // Check error from produceKVs.
return err
default:
}
// Wait for key streaming to be over.
err := <-kvErr
return err
}
func (db *DB) newStream() *Stream {
return &Stream{
db: db,
NumGo: db.opt.NumGoroutines,
LogPrefix: "Badger.Stream",
}
}
// NewStreamAt creates a new Stream at a particular timestamp. Should only be used with managed DB.
func (db *DB) NewStreamAt(readTs uint64) *Stream {
stream := db.newStream()
stream.readTs = readTs
return stream
}
func BufferToKVList(buf *z.Buffer) (*pb.KVList, error) {
var list pb.KVList
err := buf.SliceIterate(func(s []byte) error {
kv := new(pb.KV)
if err := kv.Unmarshal(s); err != nil {
return err
}
list.Kv = append(list.Kv, kv)
return nil
})
return &list, err
}
func KVToBuffer(kv *pb.KV, buf *z.Buffer) {
out := buf.SliceAllocate(kv.Size())
y.Check2(kv.MarshalToSizedBuffer(out))
}