-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_protein_pt.m
242 lines (205 loc) · 6.63 KB
/
test_protein_pt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
ri_RSE_threshold_list = [0.8];
lambda_list = [0.1];
for iii = 1:length(ri_RSE_threshold_list)
for jjj = 1:length(lambda_list)
fprintf("ri_RSE_threshold=%f,lambda=%f",ri_RSE_threshold_list(iii),lambda_list(jjj))
%% For convinience, we assume the order of the tensor is always 3;
clearvars -except iii jjj ri_RSE_threshold_list lambda_list
close all;
% clc;
addpath('datasets','ATTNA_order_5','ConfusionMatrices');
addpath('ClusteringMeasure', 'LRR', 'Nuclear_norm_l21_Algorithm');
rand('seed',30);
%% Load protein,Note: each column is an sample
load('proteinFold_Kmatrix.mat');
gt = Y(1:675);
cls_num = length(unique(gt));
V = 12; % views number
for v=1:V
X{v} = KH(:,1:675,v);
[X{v}]=NormalizeData(X{v});
%X{v} = zscore(X{v},1);
end
clear Y P KH
N = size(X{1},2); % total samples number
for v=1:V
Z{v} = zeros(N,N); %Z{2} = zeros(N,N);
W{v} = zeros(N,N);
S{v} = zeros(N,N);
E{v} = zeros(size(X{v},1),N); %E{2} = zeros(size(X{v},1),N);
Y{v} = zeros(size(X{v},1),N); %Y{2} = zeros(size(X{v},1),N);
end
sX = [N, N, V];
%% Parameter
% usually turn ir,lambda
% reshape X to 5th-order tensor
rX = [N/cls_num,cls_num,N/cls_num,cls_num,V];
% initial rank,usually choose 2 or 3
ir = 2;
rank=ir*ones(1,10);
G{1} = rand(rX(1),rank(1),rank(2),rank(3),rank(4));
G{2} = rand(rX(2),rank(5),rank(6),rank(7),rank(1));
G{3} = rand(rX(3),rank(8),rank(9),rank(2),rank(5));
G{4} = rand(rX(4),rank(10),rank(3),rank(6),rank(8));
G{5} = rand(rX(5),rank(4),rank(7),rank(9),rank(10));
%%
Isconverg = 0;
epson = 1e-7;
% trade off between 2,1-norm of E and F-norm of Z minus phi
lambda = lambda_list(jjj); %0.5 best
% set Max_iter of
Max_iter = 100;
iter = 0;
mu = 10e-5; max_mu = 10e10; pho_mu = 2;
rho = 10e-5; max_rho = 10e12; pho_rho = 2;
%% ATTNA parameter
ir = 2;
rank=ir*ones(1,10);
G{1} = rand(rX(1),rank(1),rank(2),rank(3),rank(4));
G{2} = rand(rX(2),rank(5),rank(6),rank(7),rank(1));
G{3} = rand(rX(3),rank(8),rank(9),rank(2),rank(5));
G{4} = rand(rX(4),rank(10),rank(3),rank(6),rank(8));
G{5} = rand(rX(5),rank(4),rank(7),rank(9),rank(10));
%% ATTNA parameter
ATTNA_para.ir = 2;
% reshape X to 5th-order tensor
ATTNA_para.rX = [N/cls_num,cls_num,N/cls_num,cls_num,V];
% new_ten.m parameter
ATTNA_para.new_ten_iter_max = 10;
ATTNA_para.new_ten_tol=1e-6;
% prue_ten.m parameter
ATTNA_para.prune_theshold = 0.04;
ATTNA_para.prue_gap = 4;
ATTNA_para.prue_ten_iter_max = 20;
ATTNA_para.prue_ten_tol=1e-6;
%rank_increase parameter
ATTNA_para.ri_RSE_threshold = ri_RSE_threshold_list(iii);
ATTNA_para.ri_step = 1;
ATTNA_para.ri_update_iter = 5;
ATTNA_para.ri_iter_max = 20;
ATTNA_para.ri_tol=1e-6;
tic
t1 = cputime;
while(Isconverg == 0)
fprintf('----processing iter %d--------\n', iter+1);
for v=1:V
%1 update Z^v
tmp = (X{v}'*Y{v} + mu*X{v}'*X{v} - mu*X{v}'*E{v} - W{v})./rho + S{v};
Z{v}=inv(eye(N,N)+ (mu/rho)*X{v}'*X{v})*tmp;
%2 update E^v
D = [];
for ii = 1:V
D = [D;X{ii}-X{ii}*Z{ii}+Y{ii}/mu];
end
[Econcat] = solve_l1l2(D,lambda/mu);
for ii = 1:v % reshape Econcat into tensor
idx1=1;idx2=0;
for jj = 1:ii-1
idx1 = idx1+size(X{jj},1);
end
for jj = 1:ii
idx2 = idx2+size(X{jj},1);
end
E{ii} = Econcat(idx1:idx2,:);
end
%3 update Yk
Y{v} = Y{v} + mu*(X{v}-X{v}*Z{v}-E{v});
end
%4 update S by ATTNA
Z_tensor = cat(3, Z{:,:});
W_tensor = cat(3, W{:,:});
z = Z_tensor(:);
w = W_tensor(:);
[S_tensor,rank,G] = ATTNA(Z_tensor + 1/rho*W_tensor,G,rank,iter,sX,ATTNA_para);
s = S_tensor(:);
%5 update W
w = w + rho*(z - s);
%% coverge condition
Isconverg = 1;
for v=1:V
T(v)=norm(X{v}-X{v}*Z{v}-E{v},inf);
if (norm(X{v}-X{v}*Z{v}-E{v},inf)>epson)
history.norm_Z = norm(X{v}-X{v}*Z{v}-E{v},inf);
% fprintf(' norm_Z %7.10f ', history.norm_Z);
Isconverg = 0;
end
S{v} = S_tensor(:,:,v);
W_tensor = reshape(w, sX);
W{v} = W_tensor(:,:,v);
Ti(v)=norm(Z{v}-S{v},inf);
if (norm(Z{v}-S{v},inf)>epson)
history.norm_Z_G = norm(Z{v}-S{v},inf);
% fprintf('norm_Z_G %7.10f \n', history.norm_Z_G);
Isconverg = 0;
end
end
if iter>0
Tm(iter)=max(T);
Tim(iter)=max(Ti);
end
if (iter>Max_iter)
Isconverg = 1;
end
iter = iter + 1;
mu = min(mu*pho_mu, max_mu);
rho = min(rho*pho_rho, max_rho);
end
t2 = cputime;
total_time = t2-t1;
M = 0;
for v=1:V
M = M + abs(Z{v})+abs(Z{v}');
end
figure(1); imagesc(M);colorbar;
% S_bar = CLR(M, cls_num, 0, 0 );
% figure(2); imagesc(S_bar);
g=1:1:(iter-1);
figure();
plot(g,Tm,'r',g,Tim,'b','LineWidth',2);
legend('Reconstruction','Match');
xlabel('Iteration');
ylabel('Error');
% C = SpectralClustering(M,cls_num);%
% [A nmi avgent] = compute_nmi(gt,C);
% %C = SpectralClustering(abs(Z{1})+abs(Z{1}'),cls_num);
% %[A nmi avgent] = compute_nmi(gt,C)
% % C = SpectralClustering(abs(Z{2})+abs(Z{2}'),cls_num);
% % [A nmi avgent] = compute_nmi(gt,C)
% % C = SpectralClustering(abs(Z{3})+abs(Z{3}'),cls_num);
% % [A nmi avgent] = compute_nmi(gt,C)
% ACC = Accuracy(C,double(gt));
% [f,p,r] = compute_f(gt,C);
% [AR,RI,MI,HI]=RandIndex(gt,C);
% toc;
% %save('my_new_COIL20MV_res.mat','M','ACC','nmi','AR','f','p','r');
for i=1:10
C = SpectralClustering(M,cls_num);% C = kmeans(U,numClust,'EmptyAction','drop');
[Fi(i),Pi(i),Ri(i)] = compute_f(gt,C);
[A nmii(i) avgenti(i)] = compute_nmi(gt,C);
ACCi(i) = Accuracy(C,double(gt));
if (min(gt)==0)
[ARi(i),RIi(i),MIi(i),HIi(i)]=RandIndex(gt+1,C);
else
[ARi(i),RIi(i),MIi(i),HIi(i)]=RandIndex(gt,C);
end
end
% figure();
% predict_label = Accuracy_map(C,double(gt));
% [confusion_matrix]=compute_confusion_matrix(predict_label,yalenum_in_class,yalename_class);
F(1) = mean(Fi); F(2) = std(Fi);
P(1) = mean(Pi); P(2) = std(Pi);
R(1) = mean(Ri); R(2) = std(Ri);
nmi(1) = mean(nmii); nmi(2) = std(nmii);
avgent(1) = mean(avgenti); avgent(2) = std(avgenti);
AR(1) = mean(ARi); AR(2) = std(ARi);
ACC(1)=mean(ACCi); ACC(2)=std(ACCi);
fprintf('F: %.3f(%.3f)\n', F(1), std(Fi));
fprintf('P: %.3f(%.3f)\n', P(1), std(Pi));
fprintf('R: %.3f(%.3f)\n', R(1), std(Ri));
fprintf('nmi:%.3f(%.3f)\n', nmi(1), std(nmii));
% fprintf('avgent: %f(%f)\n', avgent(1), std(avgenti));
fprintf('AR: %.3f(%.3f)\n', AR(1), std(ARi));
fprintf('ACC: %.3f(%.3f)\n', ACC(1), std(ACCi));
toc
end
end