-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbitirme1.m
executable file
·52 lines (51 loc) · 1.21 KB
/
bitirme1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%TMz Polarization
%physical constants
c = 2.998e8;
eta0 = 120*pi;
mu0 = pi*4e-7;
eps0 = 1e-9/(36*pi);
%environment parameters
width = 1;
height = 1;
tw = 1e-9/pi;%?
t0 = 4*tw;
%discretization parameters
dx = 0.005;
dy = 0.005;
nx = width/dx;
ny = height/dy;
dt = 0.95/(c*sqrt(dx^-2+dy^-2));
%calculation parameters
n_iter = 1000;
c1 = dt/(mu0*dy);
c2 = dt/(mu0*dx);
c3 = dt/(eps0*dx);
c4 = dt/(eps0*dy);
%initalization
Hx = zeros(nx,ny);
Hy = zeros(nx,ny);
Ez = zeros(nx,ny);
%iteration
for n=1:1:n_iter
%Maxwell Equations (TMz)
Ezx = diff(Ez,1,1);
Ezy = diff(Ez,1,2);
Hx(2:nx-1,2:ny) = Hx(2:nx-1,2:ny) - c1*Ezy(2:nx-1,:);
Hy(2:nx,2:ny-1) = Hy(2:nx,2:ny-1) + c2*Ezx(:,2:ny-1);
Hxy = diff(Hx,1,2);
Hyx = diff(Hy,1,1);
Ez(2:nx-1,2:ny-1) = Ez(2:nx-1,2:ny-1) + c3*Hyx(2:nx-1,2:ny-1) - c4*Hxy(2:nx-1,2:ny-1);
%Gaussian Source
f(n)= exp(-(n*dt-t0)^2/(tw^2))/dy;
Ez(round(nx/2),round(ny/2)) = Ez(round(nx/2),round(ny/2)) + f(n);
%Neuman Condition
Ez(:,2) = -Ez(:,1);
Ez(2,:) = -Ez(1,:);
Ez(:,ny-1) = -Ez(:,ny);
Ez(nx-1,:) = -Ez(nx,:);
%display
%n = n + 1;
pcolor(Ez);
shading interp;
drawnow
end