-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAlphabetNN.py
218 lines (174 loc) · 7.18 KB
/
AlphabetNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import mediapipe as mp
import cv2
import matplotlib.pyplot as plt
import pickle
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score
# mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.9)
# Initialize MediaPipe Hands
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5)
data_dir = '/Users/aahilali/Desktop/ASL_Dataset 2'
data = []
labels = []
# Check if the directory exists
if not os.path.exists(data_dir):
raise FileNotFoundError(f"The directory '{data_dir}' does not exist. Please provide the correct path to your dataset.")
# Function to process a directory and extract landmarks
def process_directory(directory):
for root, _, files in os.walk(directory):
for img_file in files:
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
data_aux = []
img_path = os.path.join(root, img_file)
img = cv2.imread(img_path)
# Check if the image was read successfully
if img is None:
print(f"Warning: Unable to read image '{img_path}'. Skipping.")
continue
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(img_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
for landmark in hand_landmarks.landmark:
data_aux.append(landmark.x)
data_aux.append(landmark.y)
data.append(data_aux)
labels.append(os.path.basename(root))
# Process the train and test directories
train_dir = os.path.join(data_dir, 'Train')
test_dir = os.path.join(data_dir, 'Test')
if os.path.exists(train_dir):
process_directory(train_dir)
else:
print(f"Warning: The directory '{train_dir}' does not exist.")
if os.path.exists(test_dir):
process_directory(test_dir)
else:
print(f"Warning: The directory '{test_dir}' does not exist.")
# Check if all data samples have the same length
max_length = max(len(sample) for sample in data)
print(f"Max length of data samples: {max_length}")
# Pad or truncate data samples to the same length
data_padded = np.array([np.pad(sample, (0, max_length - len(sample))) if len(sample) < max_length else np.array(sample[:max_length]) for sample in data])
labels = np.array(labels)
print(f"Shape of data_padded: {data_padded.shape}")
print(f"Shape of labels: {labels.shape}")
# Save data
with open('data.pickle', 'wb') as f:
pickle.dump({'data': data, 'labels': labels}, f)
print("Data processing complete and saved to 'data.pickle'")
# data_dir = '/Users/aahilali/Desktop/ASL_Dataset'
for i in sorted(os.listdir(data_dir)):
if i == '.DS_Store':
continue
for j in os.listdir(os.path.join(data_dir, i))[0:1]:
img_path = os.path.join(data_dir, i, j)
img = cv2.imread(img_path)
if img is None:
print(f"Failed to load image: {img_path}")
continue
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(img_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
img_rgb, # img to draw
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style()
)
plt.figure()
plt.title(i)
plt.imshow(img_rgb)
plt.show()
# Split data
print('################got here#################')
X_train, X_test, y_train, y_test = train_test_split(np.array(data), labels, test_size=0.15, random_state=22, shuffle=True)
print('got here')
# Define parameter grid for GridSearchCV
param_grid = {
'n_estimators': [100, 200, 300, 400, 500],
'max_depth': [None, 10, 20, 30, 40, 50],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'max_features': ['auto', 'sqrt', 'log2']
}
# Initialize the model
rf = RandomForestClassifier(random_state=22)
# Perform grid search
grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)
# Get the best model from grid search
best_rf = grid_search.best_estimator_
# Print the best parameters
print("Best parameters found: ", grid_search.best_params_)
# Fit the model with the best parameters
best_rf.fit(X_train, y_train)
print('got here2')
# Predict
pred = best_rf.predict(X_test)
print('got here 3')
# Accuracy
accuracy = accuracy_score(y_test, pred)
print(f'Accuracy: {accuracy}')
print('got here 4')
# Save model
with open('model.p', 'wb') as f:
pickle.dump({'model': best_rf}, f)
print('got here 5')
# load model
model_dict = pickle.load(open('model.p','rb'))
model = model_dict['model']
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.8, min_tracking_confidence=0.8) as hands:
while cap.isOpened():
data_aux=[]
x_ = []
y_ = []
ret, frame = cap.read()
H, W, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_rgb = cv2.flip(frame_rgb, 1)
frame_rgb.flags.writeable = False
results = hands.process(frame_rgb)
frame_rgb.flags.writeable = True
frame_rgb = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame_rgb, # img to draw
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(28, 255, 3), thickness=5, circle_radius=10),
mp_drawing.DrawingSpec(color=(236, 255, 3), thickness=5, circle_radius=10)
)
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x)
data_aux.append(y)
x_.append(x)
y_.append(y)
x1 = int(min(x_) * W)-10
y1 = int(min(y_) * H)-10
x2 = int(max(x_) * W)-10
y2 = int(max(y_) * H)-10
prediction = model.predict([np.array(data_aux)[0:42]])[0]
cv2.rectangle(frame_rgb, (x1,y1-10), (x2,y2), (255,99,173), 6)
cv2.putText(frame_rgb, prediction, (x1,y1), cv2.FONT_HERSHEY_DUPLEX, 5, (255,0,0), 5, cv2.LINE_AA)
cv2.imshow('frame',frame_rgb)
# cv2.waitKey(1)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()