-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_experiments.sh
executable file
·252 lines (218 loc) · 7.79 KB
/
run_experiments.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/bin/bash
# BSD 3-Clause License
#
# Copyright (c) 2021, The Regents of the University of California, Davis
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
dlrm_max_batch_size=4096
trimmed_iters=30 # Default iters 30
share_overheads= # Share overheads
emb_type= # FBGEMM for DLRM
bucket_size_mb=25 # Bucket size in MB
early_barrier= # Whether launch a barrier at the beginning of the iteration
aggregated_allreduce= # Whether extract an execution graph with aggregated allreduce for DDP (i.e. iteration 0)
debug= # Whether use debug mode in e2e prediction
while getopts i:ots:rad flag
do
case "${flag}" in
i) trimmed_iters=${OPTARG};;
o) share_overheads="-o";;
t) emb_type="-t";;
s) bucket_size_mb=${OPTARG};;
r) early_barrier="-r";;
a) aggregated_allreduce="-a";;
d) debug="--debug";;
esac
done
cd benchmark
num_gpus="$( nvidia-smi --query-gpu=name --format=csv,noheader | wc -l )"
# Benchmark and trace analysis
for batch_size in 4 8 16 32 64;
do
for ngpus in 1 2 4 8;
do
# Has enough GPUs?
if [ "$ngpus" -gt "$num_gpus" ];
then
continue
fi
for model in DLRM_open_source DLRM_default DLRM_MLPerf DLRM_DDP
do
# Skip 4
if [ "$batch_size" == 4 ];
then
continue
fi
# Multi-GPU?
if [ "$ngpus" -gt "1" ];
then
trace_cmd="mpirun -np $ngpus -N $ngpus python"
else
trace_cmd="python"
fi
# Options for both benchmark and trace_stats
options=" -m ${model}\
-g ${ngpus}\
${emb_type}\
-s ${bucket_size_mb}\
${early_barrier}\
${aggregated_allreduce}"
trace_cmd="$trace_cmd \
trace_stats.py \
-i ${trimmed_iters} \
${options}"
# Strong scaling
./dlrm_benchmark.sh -b $((batch_size*64)) ${options}
eval "$trace_cmd -b $((batch_size*64))" < /dev/null
# Weak scaling
if [ "$num_gpus" -gt 1 ] && (( "$( echo "$batch_size * 64 * $ngpus > $dlrm_max_batch_size" | bc -l )" )) ;
then
./dlrm_benchmark.sh -b $((batch_size*64*ngpus)) ${options}
eval "$trace_cmd -b $((batch_size*64*ngpus))" < /dev/null
fi
done
for model in bert gpt2 xlnet;
do
# OOM
if [ "$batch_size" -ge 32 ] && ([ "$model" == "bert" ] || [ "$model" == "xlnet" ]);
then
continue
fi
# Multi-GPU?
if [ "$ngpus" -gt "1" ];
then
trace_cmd="mpirun -np $ngpus -N $ngpus python"
else
trace_cmd="python"
fi
options=" -m ${model}\
-g ${ngpus}\
-s ${bucket_size_mb}\
${early_barrier}\
${aggregated_allreduce}"
trace_cmd="$trace_cmd \
trace_stats.py \
-i ${trimmed_iters} \
${options}"
./nlp_benchmark.sh -b ${batch_size} ${options}
eval "$trace_cmd -b ${batch_size}" < /dev/null
done
done
for model in resnet50 inception_v3;
do
./convnet_benchmark.sh ${model} $((batch_size*2))
python trace_stats.py -m ${model} -i ${trimmed_iters} -b $((batch_size*2))
done
for model in ncf deepfm;
do
./rm_benchmark.sh ${model} $((batch_size*64))
python trace_stats.py -m ${model} -i ${trimmed_iters} -b $((batch_size*64))
done
done
# Create shared overheads
python create_shared_overheads.py --iters $trimmed_iters
# Run prediction
for batch_size in 4 8 16 32 64;
do
for ngpus in 1 2 4 8;
do
# Has enough GPUs?
if [ "$ngpus" -gt "$num_gpus" ];
then
continue
fi
for model in DLRM_open_source DLRM_default DLRM_MLPerf DLRM_DDP
do
# Skip 4
if [ "$batch_size" == 4 ];
then
continue
fi
# Multi-GPU?
if [ "$ngpus" -gt "1" ];
then
cmd="mpirun -np $ngpus -N $ngpus python"
else
cmd="python"
fi
options=" -i ${trimmed_iters}\
-m ${model}\
-g ${ngpus}\
${emb_type}\
-s ${bucket_size_mb}\
${early_barrier}\
${aggregated_allreduce}\
${share_overheads}"
cmd=" $cmd\
e2e.py\
${options}"
# Strong scaling
eval "$cmd -b $((batch_size*128))" < /dev/null
# Weak scaling
if [ "$num_gpus" -gt 1 ] && (( "$( echo "$batch_size * 128 * $ngpus > $dlrm_max_batch_size" | bc -l )" )) ;
then
eval "$cmd -b $((batch_size*128*ngpus))" < /dev/null
fi
done
for model in bert gpt2 xlnet;
do
# OOM
if [ "$batch_size" -ge 32 ] && ([ "$model" == "bert" ] || [ "$model" == "xlnet" ]);
then
continue
fi
# Multi-GPU?
if [ "$ngpus" -gt "1" ];
then
cmd="mpirun -np $ngpus -N $ngpus python"
else
cmd="python"
fi
options=" -i ${trimmed_iters}\
-m ${model}\
-g ${ngpus}\
-s ${bucket_size_mb}\
${early_barrier}\
${aggregated_allreduce}\
${share_overheads}\
${debug}"
cmd=" $cmd\
e2e.py\
${options}"
eval "$cmd -b ${batch_size}" < /dev/null
done
done
for model in resnet50 inception_v3;
do
python e2e.py -m ${model} -i ${trimmed_iters} -b $((batch_size*4))
done
for model in ncf deepfm;
do
python e2e.py -m ${model} -i ${trimmed_iters} -b $((batch_size*128))
done
done
cd ..