-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcvnn.jl
215 lines (165 loc) · 5.33 KB
/
cvnn.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# 𝑳
topology = [-1, 28*28, 2000, 1000, 500, 100, 50, 20, 1]
const USE_QR = false
const USE_DROPOUT = false
const MAX_EPOCH = 1000
function BATCH_SIZE(epoch)
trunc(epoch / 5) + 1
end
using Gallium
breakpoint_on_error()
const τ,𝔦 = 2π, 1.0im
const 𝔦π, 𝔦τ = 𝔦*π, 𝔦*τ
println("start")
typealias ℂ Complex{Float64}
function Base.angle(z₁::ℂ, z₂::ℂ)::Float64
α = abs( angle(z₂) - angle(z₁) )
return min(α, 2π-α)
end
type Layer
#N::Int # #neurons
first::Bool
last::Bool
dropout::Float64 # 0.2 means 20% of neurons are dropped/OFF
✔︎::Any # ON/OFF for each neuron
W::Matrix{ℂ}
b::Vector{ℂ}
x::Any
y::Any
z::Any
Δ::Any
δ::Any
function Layer(dropout, Nprev, N)
✔︎ = ones(N)
if Nprev==-1
new(true,false,dropout,✔︎)
else
W = rand(N, Nprev) .* exp(𝔦τ*rand(N, Nprev))
b = rand(N) .* exp(𝔦τ*rand(N))
new(false,false,dropout,✔︎,W,b)
end
end
end
if false
Juno.breakpoint(@__FILE__, 158)
end
Pkg.add("MNIST")
using MNIST
function main()
# NETWORK of LAYERS
Θ = Vector{Layer}()
for i = 2 : length(topology)
dropout = i==2 ? .2 : .5
L = Layer( USE_DROPOUT ? dropout : 0.0, topology[i-1:i]... )
push!(Θ, L)
end
Θ[end].last = true
Θ[end].dropout = 0
𝒳, 𝒴 = traindata()
# 𝒳 = 𝒳[:,1:6000]
# 𝒴 = 𝒴[ 1:6000]
for epoch = 1 : MAX_EPOCH
println("Epoch ", epoch)
batchSize = BATCH_SIZE(epoch)
nBatches = trunc(Int, length(𝒴) / batchSize)
indices = reshape( shuffle(1 : nBatches*batchSize), nBatches, batchSize )
error = 0.0
nCorrect = 0
progress( name="batch#" ) do p
for kBatch = 1 : nBatches
#print(".")
progress(p, kBatch/nBatches)
#Turn units on/off according to dropout
for L in Θ
L.✔︎ = rand(length(L.✔︎)) .> L.dropout
if sum(L.✔︎) == 0
L.✔︎[1] = true # ensure ONE unit per layer is ON
end
end
Θ[end].✔︎ = true # all units in OUTPUT layer ON
# Get batch!
𝓍 = 𝒳[:,indices[kBatch,:]] / 255.0
𝓎 = 𝒴[ indices[kBatch,:]] / 10.0
Θ[1].y = 𝓍 .* exp( 𝔦π * 𝓍 ) .* Θ[1].✔︎ # -> upper half of unit circle
T = exp( 𝔦τ * 𝓎 ) # -> unit circle
#Forward propagate x
for i = 2 : length(Θ)
◀︎L, L = Θ[i-1:i]
L.x = ◀︎L.y
L.z = L.W * L.x .+ L.b # tried / L.W * L.x * (1-L.dropout) but no luck
# Activation Function: Don't normalize output layer!
σ(z) = L.last ? z : z ./ norm.(z)
L.y = σ(L.z) .* L.✔︎
end
L = Θ[end]
# Δ represents ‘network error’ for each neuron in the layer.
L.Δ = -L.y + T.';
∠ = angle.( L.y[1,:], T ) # <-- !!! ASSUMING ONLY ONE OUTPUT NEURON
nCorrect += sum( ∠ .< π/10 )
error += mean(∠)
# Back-propagate network error
#for ◀︎L in Θ[end-1:-1:1]
for i = length(Θ) : -1 : 2
◀︎L, L = Θ[i-1:i]
L.δ = L.Δ / (sum(◀︎L.✔︎) + 1)
if ! ◀︎L.first # no Δ, δ for INPUT layer
# For each neuron of prev layer ◀︎L, set:
# ◀︎L.Δ = SUM over each neuron L in this layer of:
# L.δ / L.weightTo◀︎L
# Examine on paper:
# {the vector L.δ} * {the matrix of weight reciprocals 1 ./ L.W}
δ = L.δ .* L.✔︎
wᵀ = 1 ./ L.W.'
◀︎L.Δ = wᵀ * δ
end
#L = ◀︎L
end
# For each neuron in network, distribute δ among weights
for L in Θ[2:end]
N = size(L.x, 1) # #inputs to final layer
if USE_QR && L.last && batchSize >= N
# Optimization, see:
# "A modified learning algorithm for the multilayer neural network
# with multi-valued neurons based on the complex QR decomposition"
# Igor Aizenberg, Antonio Luchetta, and Stefano Manetti
# Soft Computing, vol. 16, No 4, April 2012, pp. 563-575
A = hcat(ones(batchSize), L.x.')
# Have A δW = L.Δ, want δW
# Ax=b => x = A\B <-- Want this one!
# xA=b => x = A/B
ΔW = A \ L.Δ.'
𝜕b = ΔW[1]
𝜕W = ΔW[2:end].'
else
penalty = L.last ? 1 : 1 ./ norm.(L.z)
δ = penalty .* L.δ .* L.✔︎
x̄ᵀ = L.x' # <-- CONJUGATE Transpose!
𝜕W = δ * x̄ᵀ ./ batchSize
𝜕b = vec( mean(δ,2) )
end
L.W += 𝜕W
L.b += 𝜕b
end
end #kBatch
end
@printf " Error: %f, Misclassified: %d \n" (error/nBatches)/(π/2) nBatches*batchSize-nCorrect
end #epoch
println("done!")
end
main()
#ones(Float32,10,5)*im
#fill(one(Float32)*im, 10, 5)
#fill(1f0im, 10, 5)
#ones(Complex{Float32}, 10, 5)
# Note: To avoid allocation, could do:
# copy!( L_prev.Δ, result )
# A .= B ??
# A[:] = B
# L = Dict{Symbol, Any}() # Dict{Symbol,Any}[]
# L[:W] = exp(ι*τ*rand(N))
# L[:b] = exp(ι*τ*rand())
# L[:N] = N
# Error: 0.334363, Misclassified: 4656 .05 (100 its)
# Error: 0.339458, Misclassified: 4773 0 to 2 (10 its)
# Error: 0.333875, Misclassified: 4669 1 (7 its)
# Error: 0.276041, Misclassified: 4283 0 to 1 (10 its) <-- WINNER