-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
1466 lines (1310 loc) · 72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import pdb
import json
import h5py
import math
import time
import random
import argparse
import tensorboardX
from tensorboardX import SummaryWriter
import torch
import torchvision
import torch.optim as optim
import torchvision.utils as vutils
from torch.optim import lr_scheduler
sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), 'misc/'))
from loss import *
from models import *
from utils import *
from DataLoader import *
use_cuda = torch.cuda.is_available()
def str2bool(t):
if t.lower() in ['true', 't', '1']:
return True
else:
return False
def set_random_seeds(seed):
"""
Sets the random seeds for numpy, python, pytorch cpu and gpu
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def perplexity(input, masks=None):
# input: B x L array
if masks is None:
masks = np.ones_like(input)
return np.exp(-np.sum(input * masks) / np.sum(masks))
def generate_sample_sentences(lang_model, loader, num_sent=3):
lang_model.eval()
input_tokens = np.zeros((num_sent, 1)).astype(int)
input_tokens[:, :] = loader.vocab['<sos>']
input_tokens = torch.LongTensor(input_tokens)
if use_cuda:
input_tokens = input_tokens.cuda()
input_tokens = Variable(input_tokens)
sents = lang_model.sample(input_tokens, max_length=opts.max_length).data.cpu().numpy().astype(int)
sent_strings = []
for sent in sents:
l = []
for word_idx in sent:
if word_idx == loader.vocab['<eos>']:
break
l.append(loader.inv_vocab[word_idx])
sent_strings.append(' '.join(l))
lang_model.train()
return sent_strings
def evaluate_language_model(lang_model, loader, opts, split='val'):
lang_model.eval()
depleted = False
probs_correct = []
masks_correct = []
while not depleted:
# Sents: batch_size x max_length [w1, w2, ..., <eos>, <pad>, <pad>, ...]
# Masks: batch_size x max_length [ 1, 1, ..., 1, 0, 0, ...]
if split == 'train':
sents, masks, _, _, depleted = loader.next_batch_train()
elif split == 'val':
sents, masks, _, _, depleted = loader.next_batch_val()
elif split == 'test':
sents, masks, _, _, depleted = loader.next_batch_test()
batch_size = sents.shape[0]
# Input must contain a start token
input_sents = np.zeros((sents.shape[0], sents.shape[1])).astype(sents.dtype)
input_sents[:, 0] = opts.start_idx
input_sents[:, 1:] = np.copy(sents)[:, :-1]
input_sents = torch.LongTensor(input_sents)
target_sents = np.copy(sents)
if use_cuda:
input_sents = input_sents.cuda()
input_sents = Variable(input_sents)
# log_probs - batch_size x max_length x vocab_size
log_probs = lang_model(input_sents).data.cpu().numpy()
# advanced indexing to compute log probs only at true words
true_log_probs = log_probs.reshape(-1, opts.vocab_size)[range(batch_size * opts.max_length), target_sents.reshape(-1)]
true_log_probs = true_log_probs.reshape(batch_size, opts.max_length)
probs_correct.append(true_log_probs)
masks_correct.append(masks)
probs_correct = np.concatenate(probs_correct, axis=0)
masks_correct = np.concatenate(masks_correct, axis=0)
# reset the model back to train
lang_model.train()
return perplexity(probs_correct, masks_correct)
def load_embedding_from_glove(opts, loader, embedding):
glove_reader = GloveVec(opts.pretrained_glove_vector_path)
assert (glove_reader.vect_size == opts.embedding_size), "Embedding size mismatch"
embed_data = np.zeros((loader.vocab_size, opts.embedding_size), dtype=np.float64)
for word in loader.vocab.keys():
embed_idx = loader.vocab[word]
embed_data[embed_idx, :] = glove_reader.get_vector(word)
embedding.embedding.weight.data.copy_(torch.from_numpy(embed_data))
del glove_reader
def pretrain_language_model(opts):
print ("############## Language Model Pretraining ##############")
print ("########################################################")
print ('')
loader = DataLoader(opts)
opts.start_idx = loader.vocab['<sos>']
opts.padding_idx = loader.vocab['<pad>']
opts.max_length = int(loader.args[4])
opts.vocab_size = loader.vocab_size
# creating the models (EmbeddingLayer, LanguageModel)
embedding = EmbeddingLayer(loader.vocab_size, opts.embedding_size, opts.padding_idx)
if opts.use_glove_embeddings:
load_embedding_from_glove(opts, loader, embedding)
lang_model = LanguageModel(embedding, opts.hidden_size, num_rnn_layers=opts.num_rnn_layers, use_lstm=opts.use_lstm, dropout_p=opts.dropout_p)
# set mode to train
embedding.train()
lang_model.train()
# put parameters to cuda if cuda is available
if use_cuda:
embedding.cuda()
lang_model.cuda()
# define loss criterion
criterion = nn.NLLLoss(reduce=False)
# define optimizer
optimizer = optim.Adam(lang_model.parameters(), lr=opts.lr, weight_decay=opts.weight_decay)
# for logging
n_iter = 0
writer = SummaryWriter(log_dir=opts.log_dir)
# for choosing best model
best_val_perplexity = float('inf')
for _epoch in range(opts.epochs):
depleted = False
total_loss = 0.0
num_sentences = 0.0
time_start = time.time()
while not depleted:
# Sents: batch_size x max_length [w1, w2, ..., <eos>, <pad>, <pad>, ..]
# Masks: batch_size x max_length [ 1, 1, ..., 1, 0, 0, ...]
sents, masks, _, _, depleted = loader.next_batch_train()
batch_size = sents.shape[0]
# Input must contain a start token
input_sents = np.zeros((sents.shape[0], sents.shape[1])).astype(sents.dtype)
input_sents[:, 0] = opts.start_idx
input_sents[:, 1:] = np.copy(sents)[:, :-1]
input_sents = torch.LongTensor(input_sents)
target_sents = torch.LongTensor(sents)
masks = torch.Tensor(masks)
if use_cuda:
input_sents = input_sents.cuda()
target_sents = target_sents.cuda()
masks = masks.cuda()
input_sents = Variable(input_sents)
target_sents = Variable(target_sents)
masks = Variable(masks)
# Forward pass
# log_probs - (batch_size, max_length, vocab_size) variable
log_probs = lang_model(input_sents)
# nll_loss_unmasked_batch: (B) Variable
nll_loss_unmasked_batch = criterion(log_probs.view(-1, opts.vocab_size), target_sents.view(-1))
nll_loss_batch = (nll_loss_unmasked_batch * masks.view(-1)).sum()
nll_loss = nll_loss_batch / batch_size
# For logging
total_loss += nll_loss.data[0]
num_sentences += batch_size
# Backward pass
optimizer.zero_grad()
nll_loss.backward()
# Update parameters
nn.utils.clip_grad_norm(lang_model.parameters(), opts.max_norm)
optimizer.step()
n_iter += 1
time_end = time.time()
time_taken = time_end - time_start
avg_train_loss = total_loss / num_sentences
val_perplexity = evaluate_language_model(lang_model, loader, opts)
sample_sents = generate_sample_sentences(lang_model, loader, num_sent=opts.num_sample_sents)
# printing statistics on console
print ("epoch: %d, updates: %d, time taken: %.2fs, avg. train loss: %.5f, validation perplexity: %.2f." % (_epoch, \
n_iter, time_taken, avg_train_loss, val_perplexity))
print ("******************* Sample Sentences *******************")
print ('\n'.join(sample_sents))
print ("********************************************************")
print ('')
# writing to TensorboardX
writer.add_scalar('avg_train_loss', avg_train_loss, _epoch)
writer.add_scalar('val_perplexity', val_perplexity, _epoch)
# saving the model to disk
if val_perplexity <= best_val_perplexity:
best_val_perplexity = val_perplexity
save_state = {
'epoch': _epoch,
'state_dict': lang_model.state_dict(),
'optimizer': optimizer.state_dict(),
'opts': opts,
'val_perplexity': val_perplexity
}
model_name = opts.model_name + '_best.net'
torch.save(save_state, os.path.join(opts.save_path, model_name))
save_state = {
'epoch': _epoch,
'state_dict': lang_model.state_dict(),
'optimizer': optimizer.state_dict(),
'opts': opts,
'val_perplexity': val_perplexity
}
model_name = opts.model_name + '_latest.net'
torch.save(save_state, os.path.join(opts.save_path, model_name))
# cleanup TensorboardX summary writer
writer.close()
def load_embedding_from_lm(embedding, lm_state_dict):
lm_state_dict = lm_state_dict.copy()
lm_state_dict['embedding.weight'] = lm_state_dict.pop('embedding.embedding.weight')
model_dict = embedding.state_dict()
# filter out unecessary keys
lm_state_dict = {k: v for k, v in lm_state_dict.items() if k in model_dict}
# overwrite entries in the existing state dict
model_dict.update(lm_state_dict)
# load the new state_dict
embedding.load_state_dict(model_dict)
def load_encoder_from_lm(G, lm_state_dict):
if opts.num_rnn_layers > 1:
raise NotImplementedError('multiple RNN layers not supported yet')
lm_state_dict = lm_state_dict.copy()
lm_state_dict.pop('embedding.embedding.weight')
lm_state_dict.pop('out.weight')
lm_state_dict.pop('out.bias')
lm_state_dict['encoder.rnn.weight_ih_l0'] = lm_state_dict.pop('rnn.weight_ih_l0')
lm_state_dict['encoder.rnn.weight_hh_l0'] = lm_state_dict.pop('rnn.weight_hh_l0')
lm_state_dict['encoder.rnn.bias_ih_l0'] = lm_state_dict.pop('rnn.bias_ih_l0')
lm_state_dict['encoder.rnn.bias_hh_l0'] = lm_state_dict.pop('rnn.bias_hh_l0')
model_dict = G.state_dict()
# filter out unecessary keys
lm_state_dict = {k: v for k, v in lm_state_dict.items() if k in model_dict}
# overwrite entries in the existing state dict
model_dict.update(lm_state_dict)
# load the new state_dict
G.load_state_dict(model_dict)
def load_decoder_from_lm(G, lm_state_dict):
if opts.num_rnn_layers > 1:
raise NotImplementedError('multiple RNN layers not supported yet')
lm_state_dict = lm_state_dict.copy()
lm_state_dict.pop('embedding.embedding.weight')
lm_state_dict.pop('out.weight')
lm_state_dict.pop('out.bias')
lm_state_dict['decoder.rnn.weight_ih_l0'] = lm_state_dict.pop('rnn.weight_ih_l0')
lm_state_dict['decoder.rnn.weight_hh_l0'] = lm_state_dict.pop('rnn.weight_hh_l0')
lm_state_dict['decoder.rnn.bias_ih_l0'] = lm_state_dict.pop('rnn.bias_ih_l0')
lm_state_dict['decoder.rnn.bias_hh_l0'] = lm_state_dict.pop('rnn.bias_hh_l0')
model_dict = G.state_dict()
# filter out unecessary keys
lm_state_dict = {k: v for k, v in lm_state_dict.items() if k in model_dict}
# overwrite entries in the existing state dict
model_dict.update(lm_state_dict)
# load the new state_dict
G.load_state_dict(model_dict)
def load_discrimator_from_lm(D, lm_state_dict):
lm_state_dict = lm_state_dict.copy()
lm_state_dict.pop('embedding.embedding.weight')
lm_state_dict.pop('out.weight')
lm_state_dict.pop('out.bias')
model_dict = D.state_dict()
# filter out unecessary keys
lm_state_dict = {k: v for k, v in lm_state_dict.items() if k in model_dict}
# overwrite entries in the existing state dict
model_dict.update(lm_state_dict)
# load the new state_dict
D.load_state_dict(model_dict)
def estimate_returns(opts, prev_tokens, num_steps, input, hidden, encoder_outputs, G, D):
# make sure that prev_tokens do not contain <sos> token and it is a variable
"""Runs Monte Carlo search on the decoder to get returns for the intermediate steps
Args:
opts: needed for num_searches and discount_factor
prev_tokens: partial sentence (without <sos> token), shape: batch_size x (max_length - num_steps)
num_steps: (int) number of steps for decoder rollout
input: current words, shape: batch_size x 1
hidden: hidden layer for the decoder, shape: num_rnn_layers x batch_size x hidden_size
encoder_outputs: encoder intermediate hidden states, shape: max_length x batch_size x hidden_size
Returns:
returns: torch Tensor containing the return for the batch, shape: batch_size x 1
"""
batch_size = input.shape[0]
returns = torch.zeros(batch_size, 1)
if use_cuda:
returns = returns.cuda()
if num_steps == 0:
# If number of steps is zero, do not generate. Just compute the returns for the full sentence.
Dout = D(prev_tokens)
return Dout.data.view(batch_size, 1)
for _step in range(opts.num_searches):
rollouts, _ = G.decoder_rollout(num_steps, input, hidden, encoder_outputs, opts.alpha)
sents = torch.cat((prev_tokens, rollouts), dim=1)
Dout = D(sents) # returns scalar value
# b x 1
# Discount the return
returns = returns + float(np.power(opts.discount_factor, num_steps)) * Dout.data.view(batch_size, 1)
returns = returns / opts.num_searches
return returns
def batch_train_gan(sents_src, sents_tgt, masks_tgt, vocab_size_tgt, G, D, criterion, start_tok_src, start_tok_tgt, direc, opts):
"""
sents_src: Input sentences from source style to be conditioned on
sents_tgt: Positive samples of sentences from target style
masks_tgt: masks for the target sentences
vocab_size_tgt: vocab size for the target
G: Generator
D: Discriminator
start_tok_src: start token for source style
start_tok_tgt: start token for target style
direc: direction required for baseline
"""
batch_size = sents_src.shape[0]
max_length = sents_src.shape[1]
# source: input must not contain a start token
input_sents_src = torch.LongTensor(sents_src)
target_sents = torch.LongTensor(sents_tgt)
masks = torch.Tensor(masks_tgt)
if use_cuda:
input_sents_src = input_sents_src.cuda()
target_sents = target_sents.cuda()
masks = masks.cuda()
input_sents_src = Variable(input_sents_src)
input_sents_tgt = Variable(target_sents)
# Encode the input source sentence
input_sents_src_encoded, hidden = G.encode(input_sents_src)
# Generate the predicted target
decoder_input = Variable(torch.LongTensor(np.ones((batch_size, 1))*start_tok_tgt))
prev_tokens = None
if use_cuda:
decoder_input = decoder_input.cuda()
q_values_accumulated = None
log_probs_accumulated = None
log_probs_all = None
########### REMOVE THIS ##############
## TODO: What is "REMOVE THIS" for? - Santhosh
tot_returns = 0.0
for l in range(opts.max_length):
tokens, log_probs_, hidden = G.decoder_step(decoder_input, hidden, input_sents_src_encoded, opts.alpha)
# Use advanced indexing to access log_probs of actions
log_probs = log_probs_[range(batch_size), tokens[:, 0]].view(batch_size, 1)
if prev_tokens is None:
prev_tokens = tokens
else:
prev_tokens = torch.cat((prev_tokens, tokens), dim=1)
returns = estimate_returns(opts, prev_tokens, opts.max_length-l-1, tokens, \
hidden, input_sents_src_encoded, G, D)
if q_values_accumulated is None:
q_values_accumulated = returns
log_probs_accumulated = log_probs
log_probs_all = log_probs_
else:
q_values_accumulated = torch.cat((q_values_accumulated, returns), dim=1)
log_probs_accumulated = torch.cat((log_probs_accumulated, log_probs), dim=1)
log_probs_all = torch.cat((log_probs_all, log_probs_), dim=1)
if direc == 0:
opts.baseline12 = opts.baseline12 * 0.99 + torch.mean(returns) * 0.01
elif direc == 1:
opts.baseline21 = opts.baseline21 * 0.99 + torch.mean(returns) * 0.01
tot_returns += torch.mean(returns)
# To be returned
predicted_tokens = prev_tokens
# Compute RL loss for generator
if direc == 0:
loss_term_generator = rl_loss(q_values_accumulated, log_probs_accumulated, opts.baseline12)
elif direc == 1:
loss_term_generator = rl_loss(q_values_accumulated, log_probs_accumulated, opts.baseline21)
# Discriminator update
# positive target: discriminator input must NOT contain a start token
# Forward pass
Dout_real = D(input_sents_tgt)
Dout_fake = D(predicted_tokens)
# Compute discriminator loss
loss_term_discriminator = torch.mean(Dout_fake) - torch.mean(Dout_real)
# Compute the supervised generator loss
# NOTE: This must be a teacher forcing loss. Currently, this is a sampling + Cross Entropy loss which
# does not necessarily make sense.
target_sents = Variable(target_sents)
masks = Variable(masks)
nll_loss_unmasked_batch = criterion(log_probs_all.view(-1, vocab_size_tgt), target_sents.view(-1))
nll_loss_batch = (nll_loss_unmasked_batch * masks.view(-1)).sum()
loss_term_supervised_G = nll_loss_batch / batch_size
return loss_term_generator, loss_term_discriminator, loss_term_supervised_G, predicted_tokens, log_probs_accumulated, tot_returns / opts.max_length
def batch_cyclic_loss(sents_src, sents_tgt_hat, sents_tgt, masks_src, masks_tgt, G_tgt2src, start_tok_src, criterion, cos_criterion, opts):
"""
Computes the cyclic reconstruction loss
Inputs:
sents_src: Input sentences from source style to be conditioned on (B x max_length np array)
sents_tgt_hat: Generated samples of sentences from target style (B x max_length Variable)
sents_tgt: Ground truth samples of sentences from target style (B x max_length np array)
masks_src: Masks for input source style sentences
G_tgt2src: Generator that converts to source style conditioned on target style
start_tok_src: Start token in source style
Returns:
reconstruction_loss_batch - reconstruction loss for the current source sentences in batch
"""
batch_size = sents_src.shape[0]
max_length = sents_src.shape[1]
# Encode the generated target sentence
encoder_outputs, hidden = G_tgt2src.encode(sents_tgt_hat)
# Encode the groung truth target sentence
if use_cuda:
sents_tgt = Variable(torch.LongTensor(sents_tgt)).cuda()
else:
sents_tgt = Variable(torch.LongTensor(sents_tgt))
encoder_outputs_ground_truth,_ = G_tgt2src.encode(sents_tgt)
# Decode sentence in the source style
decoder_input = np.zeros((batch_size, max_length)).astype(sents_src.dtype)
decoder_input[:, 0] = start_tok_src
decoder_input[:, 1:] = np.copy(sents_src)[:, :-1]
decoder_input = torch.LongTensor(decoder_input)
if use_cuda:
decoder_input = decoder_input.cuda()
decoder_input = Variable(decoder_input)
predicted_tokens, log_probs = G_tgt2src.decode(opts.max_length, decoder_input, hidden, encoder_outputs, opts.alpha)
# Compute the reconstruction loss
vocab_size_src = log_probs.size(2)
sents_src_labels = torch.LongTensor(sents_src)
sents_masks = torch.FloatTensor(masks_src)
if use_cuda:
sents_src_labels = sents_src_labels.cuda()
sents_masks = sents_masks.cuda()
sents_src_labels = Variable(sents_src_labels)
sents_masks = Variable(sents_masks)
loss_unmasked = criterion(log_probs.view(-1, vocab_size_src), sents_src_labels.view(-1))
reconstruction_loss_batch = (loss_unmasked * sents_masks.view(-1)).sum() / batch_size
# Advanced indexing to find the encoding of the <EOS> tag
sentence_indexes = np.sum(masks_tgt, axis=1).astype(np.int32) - 1
encoder_outputs = torch.transpose(encoder_outputs.data.cpu(), 0, 1)[range(batch_size), sentence_indexes]
encoder_outputs_ground_truth = torch.transpose(encoder_outputs_ground_truth.data.cpu(), 0, 1)[range(batch_size), sentence_indexes]
# Calculate supervised encoder consine similarity
encoder_sup_loss = cos_criterion(Variable(encoder_outputs), Variable(encoder_outputs_ground_truth))
return reconstruction_loss_batch, predicted_tokens, encoder_sup_loss
def evaluate_generators_src2tgt(G12, G21, criterion, loader, opts, split='val'):
depleted = False
total_loss_term_rec11 = 0.0
total_loss_term_rec22 = 0.0
num_sentences = 0.0
sents_s1_str = []
sents_s2_hat_str = []
sents_s11_hat_str = []
sents_s2_str = []
while not depleted:
# Sents: batch_size x max_length [w1, w2, ..., <eos>, <pad>, <pad>, ...]
# Masks: batch_size x max_length [ 1, 1, ..., 1, 0, 0, ...]
if split == 'train':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_train()
elif split == 'val':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_val()
elif split == 'test':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_test()
batch_size = sents_s1.shape[0]
max_length = sents_s1.shape[1]
num_sentences += batch_size
# source input must not contain a start token
input_sents_s1 = torch.LongTensor(sents_s1)
if use_cuda:
input_sents_s1 = input_sents_s1.cuda()
input_sents_s1 = Variable(input_sents_s1)
# encode the input source sentence
input_sents_s1_encoded, hidden = G12.encode(input_sents_s1)
# generate the predicted target
decoder_input = Variable(torch.LongTensor(np.ones((batch_size, 1))*opts.start_idx_s2))
if use_cuda:
decoder_input = decoder_input.cuda()
rollouts_s2_hat, _ = G12.decoder_rollout(max_length, decoder_input, hidden, input_sents_s1_encoded, opts.alpha)
sents_s2_hat = rollouts_s2_hat.data.cpu().numpy().astype(int)
# encode the generated target sentence
gen_sents_s2_hat_encoded, hidden = G21.encode(rollouts_s2_hat)
# generate the predicted source
decoder_input = Variable(torch.LongTensor(np.ones((batch_size, 1))*opts.start_idx_s1))
if use_cuda:
decoder_input = decoder_input.cuda()
rollouts_s11_hat, _ = G21.decoder_rollout(max_length, decoder_input, hidden, gen_sents_s2_hat_encoded, opts.alpha)
sents_s11_hat = rollouts_s11_hat.data.cpu().numpy().astype(int)
# use teacher forcing to generate the cross entropy score
decoder_input = np.zeros((batch_size, max_length)).astype(sents_s1.dtype)
decoder_input[:, 0] = opts.start_idx_s1
decoder_input[:, 1:] = np.copy(sents_s1)[:, :-1]
decoder_input = Variable(torch.LongTensor(decoder_input))
if use_cuda:
decoder_input = decoder_input.cuda()
_, log_probs = G21.decode(opts.max_length, decoder_input, hidden, gen_sents_s2_hat_encoded, opts.alpha)
# Compute the reconstruction loss
vocab_size_s1 = log_probs.size(2)
sents_masks_s1 = torch.FloatTensor(masks_s1)
if use_cuda:
sents_masks_s1 = sents_masks_s1.cuda()
sents_masks_s1 = Variable(sents_masks_s1)
loss_unmasked_rec11 = criterion(log_probs.view(-1, vocab_size_s1), input_sents_s1.view(-1))
total_loss_term_rec11 = total_loss_term_rec11 + (loss_unmasked_rec11 * sents_masks_s1.view(-1)).sum().data.cpu()[0]
# computing the string sentences
sents_s1_str.extend(get_sentence_from_np(sents_s1, loader, src=True))
sents_s2_hat_str.extend(get_sentence_from_np(sents_s2_hat, loader, src=False))
sents_s11_hat_str.extend(get_sentence_from_np(sents_s11_hat, loader, src=True))
sents_s2_str.extend(get_sentence_from_np(sents_s2, loader, src=False))
n_sents = min(opts.num_sample_sents, len(sents_s1))
return ((total_loss_term_rec11 / num_sentences), \
sents_s1_str[:n_sents], sents_s2_hat_str[:n_sents], sents_s11_hat_str[:n_sents], sents_s2_str[:n_sents])
def train_cyclegan_run_iterations(opts, embedding_s1, embedding_s2, G12, G21, D1, D2, loader):
# freeze embeddings
if opts.freeze_embeddings:
for param in embedding_s1.parameters():
param.requires_grad = False
for param in embedding_s2.parameters():
param.requires_grad = False
# keep track of number of generator iterations
g_update_step_diff = opts.g_update_step_diff
gen_train_mode = 'fast'
# set mode to train
embedding_s1.train()
embedding_s2.train()
G12.train()
G21.train()
D1.train()
D2.train()
# create average return baseline
opts.baseline12 = 0.0
opts.baseline21 = 0.0
opts.baseline_r1 = 0.0
opts.baseline_r2 = 0.0
opts.baseline_c11 = 0.0
opts.baseline_c22 = 0.0
# loss criterion
criterion = nn.NLLLoss(reduce=False)
cos_criterion = nn.CosineSimilarity(dim=1, eps=1e-8)
# Reconstruction RL Loss
discount_factor_tensor = torch.FloatTensor(np.array([pow(opts.discount_factor, i) for i in reversed(range(opts.max_length))])).view(1, -1)
# put parameter to cuda if cuda is available
if use_cuda:
embedding_s1.cuda()
embedding_s2.cuda()
G12.cuda()
G21.cuda()
D1.cuda()
D2.cuda()
criterion.cuda()
discount_factor_tensor = discount_factor_tensor.cuda()
# find unique params for the whole network
net_params_G = ( set(embedding_s1.parameters()) | set(embedding_s2.parameters()) \
| set(G12.parameters()) | set(G21.parameters()) )
net_params_D = ( set(embedding_s1.parameters()) | set(embedding_s2.parameters()) \
| set(D1.parameters()) | set(D2.parameters()) )
# remove params that don't require grad updates
net_params_G = [p for p in net_params_G if p.requires_grad == True]
net_params_D = [p for p in net_params_D if p.requires_grad == True]
# define optimizer
optimizer_G = optim.RMSprop(net_params_G, lr=opts.lr, weight_decay=opts.weight_decay)
optimizer_D = optim.RMSprop(net_params_D, lr=opts.lr * opts.lr_ratio_D_by_G, weight_decay=opts.weight_decay)
# for logging
n_iter = 0
writer = SummaryWriter(log_dir=opts.log_dir)
loss_log = {'G12': 0.0, 'G21': 0.0, 'G11': 0.0, 'G22': 0.0, 'SG12': 0.0, 'SG21': 0.0, 'G12R' : 0.0, 'G21R' : 0.0, 'G12C' : 0.0, 'G21C' : 0.0, 'D1' : 0.0, 'D2' : 0.0}
num_batches = 0.0
time_start = time.time()
# for choosing the best model
best_val_rec_loss = float('inf')
# for keeping track of generator updates
num_disc_updates_since_last_gen_update = 0
for _epoch in range(opts.epochs):
depleted = False
while not depleted:
n_iter += 1 # for discriminator bias
# Set the waiting period for generator training
if n_iter % opts.disc_recalibrate == 0 and gen_train_mode == 'fast':
# TODO: Adding a condition that checks history of D losses
g_update_step_diff = opts.g_update_step_diff_recalib
gen_train_mode = 'slow'
print('Recalibrating the discriminator')
# Sents: batch_size x max_length [w1, w2, ..., <eos>, <pad>, <pad>, ..]
# Masks: batch_size x max_length [ 1, 1, ..., 1, 0, 0, ...]
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_train()
batch_size = sents_s1.shape[0]
# Compute the different losses
loss_term_g12, loss_term_d2, loss_term_sg12, sents_s2_hat, log_probs_12, avg_returns_12 = batch_train_gan(sents_s1, sents_s2, masks_s2, opts.vocab_size_s2, G12, D2, criterion,\
opts.start_idx_s1, opts.start_idx_s2, 0, opts)
loss_term_g21, loss_term_d1, loss_term_sg21, sents_s1_hat, log_probs_21, avg_returns_21 = batch_train_gan(sents_s2, sents_s1, masks_s1, opts.vocab_size_s1, G21, D1, criterion,\
opts.start_idx_s2, opts.start_idx_s1, 1, opts)
loss_term_rec11, sents_s11_hat, loss_cosine_enc11 = batch_cyclic_loss(sents_s1, sents_s2_hat, sents_s2, masks_s1, masks_s2, G21, opts.start_idx_s1, criterion, cos_criterion, opts)
loss_term_rec22, sents_s22_hat, loss_cosine_enc22 = batch_cyclic_loss(sents_s2, sents_s1_hat, sents_s1, masks_s2, masks_s1, G12, opts.start_idx_s2, criterion, cos_criterion, opts)
# RL reward for reconstruction loss
rec_reward_11 = -1.0 * loss_term_rec11.data.cpu()[0]
rec_reward_22 = -1.0 * loss_term_rec22.data.cpu()[0]
# baseline rewards for reconstruction RL reward
opts.baseline_r1 = opts.baseline_r1 * 0.99 + rec_reward_11 * 0.01
opts.baseline_r2 = opts.baseline_r2 * 0.99 + rec_reward_22 * 0.01
# compute the reconstruction RL loss
loss_term_rec12 = rl_loss(discount_factor_tensor.expand(batch_size, opts.max_length) * rec_reward_11, log_probs_12, opts.baseline_r1)
loss_term_rec21 = rl_loss(discount_factor_tensor.expand(batch_size, opts.max_length) * rec_reward_22, log_probs_21, opts.baseline_r2)
# RL reward for encoder cosine loss
cos_reward_11 = loss_cosine_enc11.data.cpu()[0]
cos_reward_22 = loss_cosine_enc22.data.cpu()[0]
# baseline rewards for cosine RL reward
opts.baseline_c11 = opts.baseline_c11 * 0.99 + cos_reward_11 * 0.01
opts.baseline_c22 = opts.baseline_c22 * 0.99 + cos_reward_22 * 0.01
# compute the cosine RL loss
loss_term_cos12 = rl_loss(discount_factor_tensor.expand(batch_size, opts.max_length) * cos_reward_11, log_probs_12, opts.baseline_c11)
loss_term_cos21 = rl_loss(discount_factor_tensor.expand(batch_size, opts.max_length) * cos_reward_22, log_probs_21, opts.baseline_c22)
# Optimize the generators
if _epoch >= opts.d_pretrain_num_epochs and num_disc_updates_since_last_gen_update >= g_update_step_diff:
optimizer_G.zero_grad()
overall_loss_G = opts.lamda_rl * (loss_term_g12 + loss_term_g21) + opts.lamda_rec_ij * (loss_term_rec12 + loss_term_rec21) + opts.lamda_cos_ij * (loss_term_cos12 + loss_term_cos21)
overall_loss_G.backward()
nn.utils.clip_grad_norm(net_params_G, opts.max_norm)
optimizer_G.step()
if gen_train_mode == 'slow':
gen_train_mode = 'fast'
g_update_step_diff = opts.g_update_step_diff
num_disc_updates_since_last_gen_update = 0
# Optimize the discriminators
if n_iter % opts.d_update_step_diff == 0:
optimizer_D.zero_grad()
overall_loss_D = loss_term_d1 + loss_term_d2
overall_loss_D.backward()
nn.utils.clip_grad_norm(net_params_D, opts.max_norm)
optimizer_D.step()
# clipping weights
for p in net_params_D:
p.data.clamp_(opts.clamp_lower, opts.clamp_upper)
num_disc_updates_since_last_gen_update += 1
# Log the losses
loss_log['G12'] += loss_term_g12.data.cpu()[0]
loss_log['G21'] += loss_term_g21.data.cpu()[0]
loss_log['G11'] += loss_term_rec11.data.cpu()[0]
loss_log['G22'] += loss_term_rec22.data.cpu()[0]
loss_log['G12R'] += loss_term_rec12.data.cpu()[0]
loss_log['G21R'] += loss_term_rec21.data.cpu()[0]
loss_log['G12C'] += loss_term_cos12.data.cpu()[0]
loss_log['G21C'] += loss_term_cos21.data.cpu()[0]
loss_log['SG12'] += loss_term_sg12.data.cpu()[0]
loss_log['SG21'] += loss_term_sg21.data.cpu()[0]
loss_log['D1'] += loss_term_d1.data.cpu()[0]
loss_log['D2'] += loss_term_d2.data.cpu()[0]
num_batches += 1
# update skip connection weight
opts.alpha = opts.alpha * opts.skip_weight_decay
# display message on output
if num_batches != 0 and n_iter % opts.log_iter == 0:
time_end = time.time()
time_taken = time_end - time_start
avg_loss_G12 = loss_log['G12'] / num_batches
avg_loss_G21 = loss_log['G21'] / num_batches
avg_loss_G11 = loss_log['G11'] / num_batches
avg_loss_G22 = loss_log['G22'] / num_batches
avg_loss_G12R = loss_log['G12R'] / num_batches
avg_loss_G21R = loss_log['G21R'] / num_batches
avg_loss_G12C = loss_log['G12C'] / num_batches
avg_loss_G21C = loss_log['G21C'] / num_batches
avg_loss_SG12 = loss_log['SG12'] / num_batches
avg_loss_SG21 = loss_log['SG21'] / num_batches
avg_loss_D1 = loss_log['D1'] / num_batches
avg_loss_D2 = loss_log['D2'] / num_batches
# printing statistics on console
print ("epoch: %d updates: %d time: %.1fs G12: %.4f G21: %.4f SG12: %.2f SG21: %.2f G11: %.2f G22: %.2f G12R: %.1f G21R: %.1f G12C: %.3f G21C: %.3f D1: %.4f D2: %.4f G_upd_last: %d" % (_epoch, \
n_iter, time_taken, avg_loss_G12, avg_loss_G21, avg_loss_SG12, avg_loss_SG21, avg_loss_G11, avg_loss_G22, \
avg_loss_G12R, avg_loss_G21R, avg_loss_G12C, avg_loss_G21C, avg_loss_D1, avg_loss_D2, num_disc_updates_since_last_gen_update))
# Writing values to SummaryWriter
writer.add_scalars('train/G_rec_losses', {'G11': avg_loss_G11, 'G22': avg_loss_G22}, n_iter)
writer.add_scalars('train/G_rec_rl_losses', {'G12R': avg_loss_G12R, 'G21R': avg_loss_G21R}, n_iter)
writer.add_scalars('train/G_cos_rl_losses', {'G12C': avg_loss_G12C, 'G21C': avg_loss_G21C}, n_iter)
writer.add_scalars('train/G_rl_losses', {'G12': avg_loss_G12, 'G21': avg_loss_G21}, n_iter)
writer.add_scalars('train/G_sup_losses', {'SG12': avg_loss_SG12, 'SG21': avg_loss_SG21}, n_iter)
writer.add_scalars('train/D_losses', {'D1': avg_loss_D1, 'D2': avg_loss_D2}, n_iter)
writer.add_scalars('train/baseline_D', {'B12': opts.baseline12, 'B21': opts.baseline21}, n_iter)
writer.add_scalars('train/baseline_rec', {'BR1': opts.baseline_r1, 'BR2': opts.baseline_r2}, n_iter)
writer.add_scalars('train/baseline_cos', {'BC1': opts.baseline_c11, 'BC2': opts.baseline_c22}, n_iter)
writer.add_scalars('train/returns', {'R12': avg_returns_12, 'R21': avg_returns_21}, n_iter)
# reset values back
loss_log = {'G12': 0.0, 'G21': 0.0, 'G11': 0.0, 'G22': 0.0, 'SG12': 0.0, 'SG21': 0.0, 'G12R' : 0.0, 'G21R' : 0.0, 'G12C' : 0.0, 'G21C' : 0.0, 'D1' : 0.0, 'D2' : 0.0}
num_batches = 0.0
time_start = time.time()
# print sample sentences on output
if n_iter % opts.sent_sample_iter == 0:
n_sents = min(opts.num_sample_sents, len(sents_s1))
sents_s11_hat = sents_s11_hat.data.cpu().numpy().astype(int)
sents_s2_hat = sents_s2_hat.data.cpu().numpy().astype(int)
sents_s1_str = get_sentence_from_np(sents_s1, loader, src=True)[:n_sents]
sents_s2_hat_str = get_sentence_from_np(sents_s2_hat, loader, src=False)[:n_sents]
sents_s11_hat_str = get_sentence_from_np(sents_s11_hat, loader, src=True)[:n_sents]
sents_s2_str = get_sentence_from_np(sents_s2, loader, src=False)[:n_sents]
print ('')
print ("******************* Sample Sentences *******************")
for _n_sent in range(n_sents):
print ('Sentence %d' % (_n_sent + 1))
print ('S1 : ' + sents_s1_str[_n_sent])
print ('S2_hat : ' + sents_s2_hat_str[_n_sent])
print ('S1_hat : ' + sents_s11_hat_str[_n_sent])
print ('S2 : ' + sents_s2_str[_n_sent])
print ('')
print ("********************************************************")
print ('')
# Evaluating model on the validation set
val_rec11_loss, val_sents_s1_str, val_sents_s2_hat_str, val_sents_s11_hat_str, val_sents_s2_str = evaluate_generators_src2tgt(G12, \
G21, criterion, loader, opts, split='val')
print ("#################### Validation Step ####################")
print ("#########################################################")
print ("epoch: %d, updates: %d, validation loss G11: %.5f." % (_epoch, n_iter, val_rec11_loss))
# Writing values to SummaryWriter
writer.add_scalar('val/G11_loss', val_rec11_loss, n_iter)
print ('')
print ("************** Validation Sample Sentences **************")
for _n_sent in range(len(val_sents_s1_str)):
print ('Sentence %d' % (_n_sent + 1))
print ('S1 : ' + val_sents_s1_str[_n_sent])
print ('S2_hat : ' + val_sents_s2_hat_str[_n_sent])
print ('S1_hat : ' + val_sents_s11_hat_str[_n_sent])
print ('S2 : ' + val_sents_s2_str[_n_sent])
print ('')
print ("*********************************************************")
print ('')
# saving the model to disk
if val_rec11_loss <= best_val_rec_loss:
best_val_rec_loss = val_rec11_loss
save_state = {
'epoch': _epoch,
'G12_state_dict': G12.state_dict(),
'G21_state_dict': G21.state_dict(),
'D1_state_dict': D1.state_dict(),
'D2_state_dict': D2.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'optimizer_D': optimizer_D.state_dict(),
'opts': opts,
'rec_loss': val_rec11_loss
}
model_name = opts.model_name + '_best.net'
torch.save(save_state, os.path.join(opts.save_path, model_name))
save_state = {
'epoch': _epoch,
'G12_state_dict': G12.state_dict(),
'G21_state_dict': G21.state_dict(),
'D1_state_dict': D1.state_dict(),
'D2_state_dict': D2.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'optimizer_D': optimizer_D.state_dict(),
'opts': opts,
'rec_loss': val_rec11_loss
}
model_name = opts.model_name + '_latest.net'
torch.save(save_state, os.path.join(opts.save_path, model_name))
def train_cyclegan(opts):
print ("################### Cyclegan Training ###################")
print ("#########################################################")
print ('')
loader = DataLoader(opts)
opts.max_length = int(loader.args[4]) # assuming max length is the same for both sets
# for source S1
opts.start_idx_s1 = loader.vocab['<sos>']
opts.padding_idx_s1 = loader.vocab['<pad>']
opts.vocab_size_s1 = loader.vocab_size
# for target S2
opts.start_idx_s2 = loader.pvocab['<sos>']
opts.padding_idx_s2 = loader.pvocab['<pad>']
opts.vocab_size_s2 = loader.pvocab_size
# for decoder skip connection weight
opts.alpha = 1.0
# Loading pretrained language models state_dict
lm1_state_dict = torch.load(opts.pretrained_lm1_model_path)['state_dict']
lm2_state_dict = torch.load(opts.pretrained_lm2_model_path)['state_dict']
# Initialising embeddings with pretrained language models
embedding_s1 = EmbeddingLayer(opts.vocab_size_s1, opts.embedding_size, opts.padding_idx_s1)
embedding_s2 = EmbeddingLayer(opts.vocab_size_s2, opts.embedding_size, opts.padding_idx_s2)
load_embedding_from_lm(embedding_s1, lm1_state_dict)
load_embedding_from_lm(embedding_s2, lm2_state_dict)
# Initialising generators with pretrained language models
G12 = Generator(embedding_s1, embedding_s2, opts.hidden_size, \
opts.num_rnn_layers, opts.use_lstm, opts.dropout_p, opts.max_length)
G21 = Generator(embedding_s2, embedding_s1, opts.hidden_size, \
opts.num_rnn_layers, opts.use_lstm, opts.dropout_p, opts.max_length)
# TODO: need to figure out how to initialise the decoder
load_encoder_from_lm(G12, lm1_state_dict)
load_decoder_from_lm(G12, lm2_state_dict)
load_encoder_from_lm(G21, lm2_state_dict)
load_decoder_from_lm(G21, lm1_state_dict)
# Initialising discriminators with pretrained language models
D1 = Discriminator(embedding_s1, opts.hidden_size, \
opts.num_rnn_layers, opts.use_lstm, opts.dropout_p)
D2 = Discriminator(embedding_s2, opts.hidden_size, \
opts.num_rnn_layers, opts.use_lstm, opts.dropout_p)
load_discrimator_from_lm(D1, lm1_state_dict)
load_discrimator_from_lm(D2, lm2_state_dict)
train_cyclegan_run_iterations(opts, embedding_s1, embedding_s2, G12, G21, D1, D2, loader)
def evaluate_seqseq_src2tgt(G12, G21, criterion, loader, opts, split='val'):
depleted = False
total_loss_G12 = 0.0
total_loss_G21 = 0.0
num_sentences = 0.0
sents_s1_str = []
sents_s2_hat_str = []
sents_s1_hat_str = []
sents_s2_str = []
while not depleted:
# Sents: batch_size x max_length [w1, w2, ..., <eos>, <pad>, <pad>, ...]
# Masks: batch_size x max_length [ 1, 1, ..., 1, 0, 0, ...]
if split == 'train':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_train()
elif split == 'val':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_val()
elif split == 'test':
sents_s1, masks_s1, sents_s2, masks_s2, depleted = loader.next_batch_test()
batch_size = sents_s1.shape[0]
max_length = sents_s1.shape[1]
num_sentences += batch_size
# source input must not contain a start token
input_sents_s1 = torch.LongTensor(sents_s1)
input_sents_s2 = torch.LongTensor(sents_s2)
if use_cuda:
input_sents_s1 = input_sents_s1.cuda()
input_sents_s2 = input_sents_s2.cuda()
input_sents_s1 = Variable(input_sents_s1)
input_sents_s2 = Variable(input_sents_s2)
# encode the input source sentence
input_sents_s1_encoded, hidden = G12.encode(input_sents_s1)
# generate the predicted target
decoder_input_12 = np.zeros((batch_size, max_length)).astype(sents_s2.dtype)
decoder_input_12[:, 0] = opts.start_idx_s2
decoder_input_12[:, 1:] = np.copy(sents_s2)[:, :-1]
decoder_input_12 = Variable(torch.LongTensor(decoder_input_12))
if use_cuda:
decoder_input_12 = decoder_input_12.cuda()
rollouts_s2_hat, log_probs_12 = G12.decode(max_length, decoder_input_12, hidden, input_sents_s1_encoded, opts.alpha)
sents_s2_hat = rollouts_s2_hat.data.cpu().numpy().astype(int)
# encode the input source sentence
input_sents_s2_encoded, hidden = G21.encode(input_sents_s2)
# generate the predicted target
decoder_input_21 = np.zeros((batch_size, max_length)).astype(sents_s1.dtype)
decoder_input_21[:, 0] = opts.start_idx_s1
decoder_input_21[:, 1:] = np.copy(sents_s1)[:, :-1]
decoder_input_21 = Variable(torch.LongTensor(decoder_input_21))
if use_cuda:
decoder_input_21 = decoder_input_21.cuda()
rollouts_s1_hat, log_probs_21 = G21.decode(max_length, decoder_input_21, hidden, input_sents_s2_encoded, opts.alpha)
sents_s1_hat = rollouts_s1_hat.data.cpu().numpy().astype(int)
# Compute the cross entropy loss
vocab_size_s2 = log_probs_12.size(2)
sents_masks_s2 = torch.FloatTensor(masks_s2)
if use_cuda:
sents_masks_s2 = sents_masks_s2.cuda()
sents_masks_s2 = Variable(sents_masks_s2)
loss_unmasked_G12 = criterion(log_probs_12.view(-1, vocab_size_s2), input_sents_s2.view(-1))
total_loss_G12 = total_loss_G12 + (loss_unmasked_G12 * sents_masks_s2.view(-1)).sum().data.cpu()[0]
# Compute the cross entropy loss
vocab_size_s1 = log_probs_21.size(2)
sents_masks_s1 = torch.FloatTensor(masks_s1)
if use_cuda:
sents_masks_s1 = sents_masks_s1.cuda()
sents_masks_s1 = Variable(sents_masks_s1)
loss_unmasked_G21 = criterion(log_probs_21.view(-1, vocab_size_s1), input_sents_s1.view(-1))
total_loss_G21 = total_loss_G21 + (loss_unmasked_G21 * sents_masks_s1.view(-1)).sum().data.cpu()[0]
# computing the string sentences
sents_s1_str.extend(get_sentence_from_np(sents_s1, loader, src=True))
sents_s2_hat_str.extend(get_sentence_from_np(sents_s2_hat, loader, src=False))
sents_s1_hat_str.extend(get_sentence_from_np(sents_s1_hat, loader, src=True))
sents_s2_str.extend(get_sentence_from_np(sents_s2, loader, src=False))
n_sents = min(opts.num_sample_sents, len(sents_s1))
return ((total_loss_G12 / num_sentences), (total_loss_G21 / num_sentences), \
sents_s1_str[:n_sents], sents_s2_hat_str[:n_sents], sents_s1_hat_str[:n_sents], sents_s2_str[:n_sents])
def batch_train_seq2seq(sents_src, sents_tgt, masks_tgt, vocab_size_tgt, G, criterion, start_tok_tgt, alpha, schedule_eps=None):
"""
sents_src: Input sentences from source style to be conditioned on
sents_tgt: Paired samples of sentences from target style
masks_tgt: masks for the target sentences
vocab_size_tgt: vocab size for the target
G: Generator
criterion: NLLLoss criterion
start_tok_tgt: start token for target style
alpha: alpha needed for decoder residual connection
schedule_eps: epsilon for scheduled sampling (check decode() for details)
"""
batch_size = sents_src.shape[0]
max_length = sents_src.shape[1]
# source: input must not contain a start token
input_sents_src = torch.LongTensor(sents_src)
target_sents = torch.LongTensor(sents_tgt)
masks = torch.Tensor(masks_tgt)
if use_cuda:
input_sents_src = input_sents_src.cuda()
target_sents = target_sents.cuda()
masks = masks.cuda()
input_sents_src = Variable(input_sents_src)
# target: decoder input must contain a start token
output_sents_tgt = np.zeros((batch_size, max_length)).astype(sents_tgt.dtype)
output_sents_tgt[:, 0] = start_tok_tgt
output_sents_tgt[:, 1:] = np.copy(sents_tgt)[:, :-1]
output_sents_tgt = torch.LongTensor(output_sents_tgt)
if use_cuda:
output_sents_tgt = output_sents_tgt.cuda()
output_sents_tgt = Variable(output_sents_tgt)
# Forward pass through the generator
input_sents_src_encoded, hidden = G.encode(input_sents_src)
rollouts, log_probs = G.decode(max_length, output_sents_tgt, hidden, input_sents_src_encoded, opts.alpha, schedule_eps)
target_sents = Variable(target_sents)
masks = Variable(masks)
nll_loss_unmasked_batch = criterion(log_probs.view(-1, vocab_size_tgt), target_sents.view(-1))
nll_loss_batch = (nll_loss_unmasked_batch * masks.view(-1)).sum()
nll_loss = nll_loss_batch / batch_size
return rollouts, nll_loss
def train_seq2seq(opts):
print ("################# seq2seq MLE training #################")