-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
469 lines (416 loc) · 19.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from numpy.random import binomial
use_cuda = torch.cuda.is_available()
MAX_LENGTH = 100
class EmbeddingLayer(nn.Module):
def __init__(self, vocab_size, embedding_size, padding_idx=2):
"""Create a new EmbeddingLayer model.
Args:
vocab_size: Size of the vocabulary
embedding_size: Size of the word embedding
padding_idx: replaces occurences of padding_idx with 0 vector (default: 2)
"""
super(EmbeddingLayer, self).__init__()
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.padding_idx = padding_idx
self.embedding = nn.Embedding(vocab_size, embedding_size, padding_idx=padding_idx)
def forward(self, x):
"""Forward function for EmbeddingLayer
Args:
x: Input sentences of shape: batch_size x seq_len
Returns:
embedded: Embedded vector of shape: batch_size x seq_len x embedding_size
"""
embedded = self.embedding(x)
return embedded
class LanguageModel(nn.Module):
def __init__(self, input_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1,):
super(LanguageModel, self).__init__()
self.vocab_size = input_embedding.vocab_size
self.embedding_size = input_embedding.embedding_size
self.hidden_size = hidden_size
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.dropout_p = dropout_p
self.embedding = input_embedding
if use_lstm:
self.rnn = nn.LSTM(self.embedding_size, self.hidden_size, num_rnn_layers)
else:
self.rnn = nn.GRU(self.embedding_size, self.hidden_size, num_rnn_layers)
self.out = nn.Linear(self.hidden_size, self.vocab_size)
self.dropout1 = nn.Dropout(self.dropout_p)
self.dropout2 = nn.Dropout(self.dropout_p)
def forward(self, x, hidden=None):
"""Forward function for LanguageModel
Args:
x: Input sentences of shape: batch_size x seq_len
hidden: Previous hidden layer of shape: num_rnn_layers x batch_size x hidden_size
Returns:
output: Log Softmax probs for predicting the words Shape: batch_size x seq_len x vocab_size
"""
if hidden is None:
if not self.use_lstm:
hidden = self.initHidden(x.size(0))
else:
hidden = (self.initHidden(x.size(0)), self.initHidden(x.size(0)))
embedded = self.embedding(x)
embedded = self.dropout1(embedded)
embedded = torch.transpose(embedded, 0, 1)
output, hidden = self.rnn(embedded, hidden)
output = torch.transpose(output, 0, 1)
# batch_size x seq_len x hidden_size
batch_size = output.size(0)
seq_len = output.size(1)
output = output.contiguous().view(-1, self.hidden_size)
output = self.dropout2(output)
output = self.out(output)
output = output.view(batch_size, seq_len, -1)
output = F.log_softmax(output, dim=2)
return output
def sample(self, x, max_length, hidden=None):
"""Sample sentences from the LanguageModel
Args:
x: <sos> tokens of shape: batch_size x seq_len
max_length: length of sentence to generate
Returns:
sents: sentences of shape: batch_size x max_length
"""
if hidden is None:
if not self.use_lstm:
hidden = self.initHidden(x.size(0))
else:
hidden = (self.initHidden(x.size(0)), self.initHidden(x.size(0)))
sents = None
for step in range(max_length):
embedded = self.embedding(x)
embedded = self.dropout1(embedded)
embedded = torch.transpose(embedded, 0, 1)
output, hidden = self.rnn(embedded, hidden)
output = torch.transpose(output, 0, 1)
# batch_size x 1 x hidden_size
batch_size = output.size(0)
output = output.contiguous().view(-1, self.hidden_size)
output = self.dropout2(output)
output = self.out(output)
# batch_size x vocab_size
output = F.softmax(output, dim=1)
tokens = output.multinomial(num_samples=1)
x = tokens
if sents is None:
sents = tokens
else:
sents = torch.cat([sents, tokens], dim=1)
return sents
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result
class EncoderRNN(nn.Module):
def __init__(self, input_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1):
"""Create a new EmbeddingLayer model.
Args:
input_embedding: TODO
num_rnn_layers: Number of stacked RNN cells (default: 1)
use_lstm: if True uses LSTM cells otherwise uses GRU cells (default:True)
"""
super(EncoderRNN, self).__init__()
self.input_vocab_size = input_embedding.vocab_size
self.embedding_size = input_embedding.embedding_size
self.hidden_size = hidden_size
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.dropout_p = dropout_p
self.embedding = input_embedding
self.dropout = nn.Dropout(self.dropout_p)
if use_lstm:
self.rnn = nn.LSTM(self.embedding_size, self.hidden_size, self.num_rnn_layers)
else:
self.rnn = nn.GRU(self.embedding_size, self.hidden_size, self.num_rnn_layers)
def forward(self, x, hidden=None):
"""Forward function for EncoderRNN
Args:
x: Input sentences of shape: batch_size x seq_len
hidden: Previous hidden layer of shape: num_rnn_layers x batch_size x hidden_size
Returns:
output: Output features h_t from the last layer of the RNN, for each t. Shape: seq_len x batch_size x hidden_size
hidden: The hidden state for t = seq_len. Shape: num_rnn_layers x batch_size x hidden_size
"""
if hidden is None:
if not self.use_lstm:
hidden = self.initHidden(x.size(0))
else:
hidden = (self.initHidden(x.size(0)), self.initHidden(x.size(0)))
embedded = self.embedding(x)
embedded = self.dropout(embedded)
# converting shape from (batch x seq_len x embed_size) to (seq_len x batch x embed_size)
output = torch.transpose(embedded, 0, 1)
output, hidden = self.rnn(output, hidden)
return output, hidden
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result
class AttnDecoderRNN(nn.Module):
def __init__(self, output_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.output_vocab_size = output_embedding.vocab_size
self.embedding_size = output_embedding.embedding_size
self.hidden_size = hidden_size
self.dropout_p = dropout_p
self.max_length = max_length
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.embedding = output_embedding
self.attn = nn.Linear(self.embedding_size + self.hidden_size, self.max_length)
self.attn_combine = nn.Linear(self.embedding_size + self.hidden_size, self.embedding_size)
self.dropout = nn.Dropout(self.dropout_p)
if use_lstm:
self.rnn = nn.LSTM(self.embedding_size, self.hidden_size, self.num_rnn_layers)
else:
self.rnn = nn.GRU(self.embedding_size, self.hidden_size, self.num_rnn_layers)
self.out = nn.Linear(self.hidden_size, self.output_vocab_size)
def forward(self, x, hidden, encoder_outputs, alpha):
# x: b x 1
embedded = self.embedding(x)
# b x 1 x embedding_size
embedded = self.dropout(embedded)
# b x 1 x embedding_size
embedded = torch.transpose(embedded, 0, 1)
# 1 x b x embedding_size
if self.use_lstm:
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0][0]), 1)), dim=1)
else:
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
# b x max_length
encoder_outputs = torch.transpose(encoder_outputs, 0, 1)
# b x max_length x hidden_size
attn_applied = torch.bmm(attn_weights.unsqueeze(1),
encoder_outputs)
# b x 1 x hidden_size
attn_applied = torch.transpose(attn_applied, 0, 1)
# 1 x b x hidden_size
output = torch.cat((embedded[0], attn_applied[0]), 1)
# b x (hidden_size + embedding_size)
output = self.attn_combine(output).unsqueeze(0)
# 1 x b x hidden_size
# TODO: need to make the skip connection from inputs to outputs
output = ((1.0 - alpha) * output) + (alpha * embedded)
output = F.relu(output)
# 1 x b x hidden_size
output, hidden = self.rnn(output, hidden)
# output: 1 x b x hidden_size
# hidden: 1 x b x hidden_size
output = F.log_softmax(self.out(output[0]), dim=1)
# b x output_vocab_size
return output, hidden
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result
class DecoderRNN(nn.Module):
def __init__(self, output_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1, max_length=MAX_LENGTH):
super(DecoderRNN, self).__init__()
self.output_vocab_size = output_embedding.vocab_size
self.embedding_size = output_embedding.embedding_size
self.hidden_size = hidden_size
self.dropout_p = dropout_p
self.max_length = max_length
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.embedding = output_embedding
self.dropout = nn.Dropout(self.dropout_p)
if use_lstm:
self.rnn = nn.LSTM(self.embedding_size, self.hidden_size, self.num_rnn_layers)
else:
self.rnn = nn.GRU(self.embedding_size, self.hidden_size, self.num_rnn_layers)
self.out = nn.Linear(self.hidden_size, self.output_vocab_size)
def forward(self, x, hidden, encoder_outputs, alpha):
# x: b x 1
embedded = self.embedding(x)
# b x 1 x embedding_size
embedded = self.dropout(embedded)
# b x 1 x embedding_size
output = torch.transpose(embedded, 0, 1)
# 1 x b x embedding_size
output, hidden = self.rnn(output, hidden)
# output: 1 x b x hidden_size
# hidden: 1 x b x hidden_size
output = F.log_softmax(self.out(output[0]), dim=1)
# b x output_vocab_size
return output, hidden
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result
class Generator(nn.Module):
def __init__(self, input_embedding, output_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1, max_length=MAX_LENGTH, use_attention=True):
super(Generator, self).__init__()
self.input_vocab_size = input_embedding.vocab_size
self.input_embedding_size = input_embedding.embedding_size
self.output_vocab_size = output_embedding.vocab_size
self.output_embedding_size = output_embedding.embedding_size
self.hidden_size = hidden_size
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.dropout_p = dropout_p
self.max_length = max_length
self.use_attention = use_attention
self.encoder = EncoderRNN(input_embedding, self.hidden_size, num_rnn_layers=self.num_rnn_layers, use_lstm=self.use_lstm, \
dropout_p=self.dropout_p)
if self.use_attention:
self.decoder = AttnDecoderRNN(output_embedding, self.hidden_size, num_rnn_layers=self.num_rnn_layers, use_lstm=self.use_lstm, \
dropout_p=self.dropout_p, max_length=self.max_length)
else:
self.decoder = DecoderRNN(output_embedding, self.hidden_size, num_rnn_layers=self.num_rnn_layers, use_lstm=self.use_lstm, \
dropout_p=self.dropout_p, max_length=self.max_length)
def encode(self, x, hidden=None):
if hidden is None:
if not self.use_lstm:
hidden = self.initHidden(x.size(0))
else:
hidden = (self.initHidden(x.size(0)), self.initHidden(x.size(0)))
encoder_outputs, hidden = self.encoder(x, hidden)
return encoder_outputs, hidden
def decode(self, num_steps, decoder_input, hidden, encoder_outputs, alpha, scheduled_eps=None):
"""Rollout the decoder for a number of steps with teacher forcing
Args:
num_steps: integer > 0
decoder_input: tokens, shape: batch_size x num_steps
hidden: decoder hidden state, shape: num_rnn_layers x batch_size x hidden_size
encoder_outputs: encoder intermediate hidden states, shape: max_length x batch_size x hidden_size
Returns:
rollouts: the tokens generated by the decoder, shape: batch_size x num_steps
log_probs_accumulated: batch_size x max_length x vocab_size Variable
scheduled_eps: epsilon for scheduled sampling,
i.e., p(sampling true input) = epsilon, p(sampling previously predicted word) = 1 - epsilon
"""
assert (num_steps > 0), "num_steps for decoder rollout is 0"
rollouts = None
log_probs_accumulated = None
scheduled_choice = 1
for _step in range(num_steps):
if _step > 0 and scheduled_eps is not None:
scheduled_choice = binomial(1, scheduled_eps)
if scheduled_choice == 1:
tokens, log_probs, hidden = self.decoder_step(decoder_input[:, _step].contiguous().view(-1, 1), hidden, encoder_outputs, alpha)
else:
tokens, log_probs, hidden = self.decoder_step(tokens_past, hidden, encoder_outputs, alpha)
log_probs = log_probs.view(log_probs.size(0), 1, -1)
if rollouts is None:
rollouts = tokens
log_probs_accumulated = log_probs
else:
rollouts = torch.cat((rollouts, tokens), dim=1)
log_probs_accumulated = torch.cat((log_probs_accumulated, log_probs), dim=1)
tokens_past = tokens
return rollouts, log_probs_accumulated
def decoder_step(self, decoder_input, hidden, encoder_outputs, alpha):
"""Rollout the decoder for a single step
Args:
num_steps: integer > 0
decoder_input: tokens, shape: batch_size x 1
hidden: decoder hidden state, shape: num_rnn_layers x batch_size x hidden_size
encoder_outputs: encoder intermediate hidden states, shape: max_length x batch_size x hidden_size
Returns:
tokens: the tokens generated by the decoder, shape: batch_size x 1
log_probs: log probabilites for the tokens, shape: batch_size x vocab_size
hidden: decoder hidden state, shape: num_rnn_layers x batch_size x hidden_size
"""
output, hidden = self.decoder(decoder_input, hidden, encoder_outputs, alpha)
probs = F.softmax(output, dim=1)
tokens = probs.multinomial(num_samples=1)
log_probs = F.log_softmax(output, dim=1)
return tokens, log_probs, hidden
def decoder_rollout(self, num_steps, decoder_input, hidden, encoder_outputs, alpha):
"""Rollout the decoder for a number of steps
Args:
num_steps: integer > 0
decoder_input: tokens, shape: batch_size x 1
hidden: decoder hidden state, shape: num_rnn_layers x batch_size x hidden_size
encoder_outputs: encoder intermediate hidden states, shape: max_length x batch_size x hidden_size
Returns:
rollouts: the tokens generated by the decoder, shape: batch_size x num_steps
log_probs_accumulated: batch_size x max_length x vocab_size Variable
"""
assert (num_steps > 0), "num_steps for decoder rollout is 0"
rollouts = None
log_probs_accumulated = None
for _step in range(num_steps):
tokens, log_probs, hidden = self.decoder_step(decoder_input, hidden, encoder_outputs, alpha)
log_probs = log_probs.view(log_probs.size(0), 1, -1)
decoder_input = tokens
if rollouts is None:
rollouts = tokens
log_probs_accumulated = log_probs
else:
rollouts = torch.cat((rollouts, tokens), dim=1)
log_probs_accumulated = torch.cat((log_probs_accumulated, log_probs), dim=1)
return rollouts, log_probs_accumulated
# TODO add weight initialisation
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result
class Discriminator(nn.Module):
def __init__(self, output_embedding, hidden_size, num_rnn_layers=1, use_lstm=True, dropout_p=0.1):
super(Discriminator, self).__init__()
self.output_vocab_size = output_embedding.vocab_size
self.embedding_size = output_embedding.embedding_size
self.hidden_size = hidden_size
self.num_rnn_layers = num_rnn_layers
self.use_lstm = use_lstm
self.dropout_p=dropout_p
self.embedding = output_embedding
self.dropout = nn.Dropout(self.dropout_p)
if use_lstm:
self.rnn = nn.LSTM(self.embedding_size, self.hidden_size, self.num_rnn_layers)
else:
self.rnn = nn.GRU(self.embedding_size, self.hidden_size, self.num_rnn_layers)
self.out = nn.Linear(self.hidden_size, 1)
def forward(self, x, hidden=None):
"""Forward function for Discriminator
Args:
x: Input sentences of shape: batch_size x seq_len
hidden: Previous hidden layer of shape: num_rnn_layers x batch_size x hidden_size
Returns:
output: Single scalar value (needed for WGAN) shape: batch_size x 1
"""
if hidden is None:
if not self.use_lstm:
hidden = self.initHidden(x.size(0))
else:
hidden = (self.initHidden(x.size(0)), self.initHidden(x.size(0)))
embedded = self.embedding(x)
embedded = self.dropout(embedded)
embedded = torch.transpose(embedded, 0, 1)
rnn_outputs, hidden = self.rnn(embedded, hidden)
if self.use_lstm:
output = hidden[0].view(-1, self.hidden_size)
else:
output = hidden.view(-1, self.hidden_size)
output = self.out(output)
return output
# TODO add weight initialisation
def initHidden(self, batch_size):
result = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if use_cuda:
return result.cuda()
else:
return result