-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.h
85 lines (72 loc) · 2.81 KB
/
geometry.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#ifndef __GEOMETRY_H__
#define __GEOMETRY_H__
#include <cmath>
#include <vector>
#include <cassert>
#include <iostream>
template <size_t DIM, typename T> struct vec {
vec() { for (size_t i=DIM; i--; data_[i] = T()); }
T& operator[](const size_t i) { assert(i<DIM); return data_[i]; }
const T& operator[](const size_t i) const { assert(i<DIM); return data_[i]; }
private:
T data_[DIM];
};
typedef vec<2, float> Vec2f;
typedef vec<3, float> Vec3f;
typedef vec<3, int > Vec3i;
typedef vec<4, float> Vec4f;
template <typename T> struct vec<2,T> {
vec() : x(T()), y(T()) {}
vec(T X, T Y) : x(X), y(Y) {}
template <class U> vec<2,T>(const vec<2,U> &v);
T& operator[](const size_t i) { assert(i<2); return i<=0 ? x : y; }
const T& operator[](const size_t i) const { assert(i<2); return i<=0 ? x : y; }
T x,y;
};
template <typename T> struct vec<3,T> {
vec() : x(T()), y(T()), z(T()) {}
vec(T X, T Y, T Z) : x(X), y(Y), z(Z) {}
T& operator[](const size_t i) { assert(i<3); return i<=0 ? x : (1==i ? y : z); }
const T& operator[](const size_t i) const { assert(i<3); return i<=0 ? x : (1==i ? y : z); }
float norm() { return std::sqrt(x*x+y*y+z*z); }
vec<3,T> & normalize(T l=1) { *this = (*this)*(l/norm()); return *this; }
T x,y,z;
};
template <typename T> struct vec<4,T> {
vec() : x(T()), y(T()), z(T()), w(T()) {}
vec(T X, T Y, T Z, T W) : x(X), y(Y), z(Z), w(W) {}
T& operator[](const size_t i) { assert(i<4); return i<=0 ? x : (1==i ? y : (2==i ? z : w)); }
const T& operator[](const size_t i) const { assert(i<4); return i<=0 ? x : (1==i ? y : (2==i ? z : w)); }
T x,y,z,w;
};
template<size_t DIM,typename T> T operator*(const vec<DIM,T>& lhs, const vec<DIM,T>& rhs) {
T ret = T();
for (size_t i=DIM; i--; ret+=lhs[i]*rhs[i]);
return ret;
}
template<size_t DIM,typename T>vec<DIM,T> operator+(vec<DIM,T> lhs, const vec<DIM,T>& rhs) {
for (size_t i=DIM; i--; lhs[i]+=rhs[i]);
return lhs;
}
template<size_t DIM,typename T>vec<DIM,T> operator-(vec<DIM,T> lhs, const vec<DIM,T>& rhs) {
for (size_t i=DIM; i--; lhs[i]-=rhs[i]);
return lhs;
}
template<size_t DIM,typename T,typename U> vec<DIM,T> operator*(const vec<DIM,T> &lhs, const U& rhs) {
vec<DIM,T> ret;
for (size_t i=DIM; i--; ret[i]=lhs[i]*rhs);
return ret;
}
template<size_t DIM,typename T> vec<DIM,T> operator-(const vec<DIM,T> &lhs) {
return lhs*T(-1);
}
template <typename T> vec<3,T> cross(vec<3,T> v1, vec<3,T> v2) {
return vec<3,T>(v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x);
}
template <size_t DIM, typename T> std::ostream& operator<<(std::ostream& out, const vec<DIM,T>& v) {
for(unsigned int i=0; i<DIM; i++) {
out << v[i] << " " ;
}
return out ;
}
#endif //__GEOMETRY_H__