-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_sfe_area.py
210 lines (183 loc) · 9.15 KB
/
train_sfe_area.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import datetime
import torch
import argparse
import Levenshtein
import torchvision.transforms as transforms
from torch.nn import CTCLoss, MSELoss
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from transform_helper import PadWhite
from models.model_unet import UNet
from utils import get_ocr_helper, get_char_maps, save_img, compare_labels
from datasets.img_dataset import ImgDataset
import properties as properties
class TrainSFEPrep:
def __init__(self, args):
self.ocr_name = args.ocr
self.batch_size = args.batch_size
self.lr = args.lr
self.epochs = args.epoch
self.std = args.std
self.ocr = args.ocr
self.p_samples = args.p
self.sec_loss_scalar = args.scalar
self.train_set = properties.vgg_text_dataset_train
self.validation_set = properties.vgg_text_dataset_dev
self.input_size = properties.input_size
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu")
self.prep_model = UNet().to(self.device)
self.ocr = get_ocr_helper(self.ocr)
self.char_to_index, self.index_to_char, self.vocab_size = get_char_maps(
properties.char_set)
self.loss_fn = CTCLoss(reduction='none').to(self.device)
transform = transforms.Compose([
PadWhite(self.input_size),
transforms.ToTensor(),
])
self.dataset = ImgDataset(
self.train_set, transform=transform, include_name=True)
self.validation_set = ImgDataset(
self.validation_set, transform=transform, include_name=True)
self.loader_train = torch.utils.data.DataLoader(
self.dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
self.loader_validation = torch.utils.data.DataLoader(
self.validation_set, batch_size=self.batch_size, drop_last=True)
self.val_set_size = len(self.validation_set)
self.train_set_size = len(self.dataset)
self.optimizer = optim.Adam(
self.prep_model.parameters(), lr=self.lr, weight_decay=0)
self.secondary_loss_fn = MSELoss().to(self.device)
def _get_cer(self, preds, labels):
cers = []
for i in range(len(labels)):
distance = Levenshtein.distance(labels[i], preds[i])
cers.append(distance)
return torch.tensor(cers, dtype=float)
def train(self):
step = 0
validation_step = 0
writer = SummaryWriter(properties.prep_tensor_board)
temp_optimizer = optim.Adam(
self.prep_model.parameters(), lr=0.01, weight_decay=0)
temp_loss_fn = MSELoss().to(self.device)
self.prep_model.train()
for images, labels, names in self.loader_train:
self.prep_model.zero_grad()
X_var = images.to(self.device)
preds = self.prep_model(X_var)
loss = temp_loss_fn(preds, X_var)
loss.backward()
temp_optimizer.step()
for epoch in range(self.epochs):
training_loss = 0
self.prep_model.train()
for images, labels, names in self.loader_train:
self.prep_model.zero_grad()
X_var = images.to(self.device)
preds = self.prep_model(X_var)
_, c, h, w = images.shape
grads = torch.zeros_like(images).to(self.device)
batch_loss = 0
for i in range(self.batch_size):
noise = torch.randn(
size=(self.p_samples, c, h, w)).to(self.device)
noise = torch.cat((noise, -noise), dim=0)
noisy_imgs = preds[i] + (noise*self.std)
noisy_imgs = noisy_imgs.view(2*self.p_samples, c, -1)
noisy_imgs -= noisy_imgs.min(2, keepdim=True)[0]
noisy_imgs /= noisy_imgs.max(2, keepdim=True)[0]
noisy_imgs = noisy_imgs.view(2*self.p_samples, c, h, w)
noisy_labels = self.ocr.get_labels(
noisy_imgs.detach().cpu())
loss = self._get_cer(
noisy_labels, [labels[i]]*2*self.p_samples)
mean_loss = loss.mean(dim=0)
batch_loss += mean_loss.item()
loss = loss.unsqueeze(1).unsqueeze(1).unsqueeze(1)
loss = noise*loss.to(self.device)
loss = torch.div(loss.mean(dim=0), self.std)
grads[i] += loss
training_loss += (batch_loss/self.batch_size)
sec_loss = self.secondary_loss_fn(preds, torch.ones(
preds.shape).to(self.device))*self.sec_loss_scalar
sec_loss.backward(retain_graph=True)
preds.backward(grads)
self.optimizer.step()
if step % 500 == 0:
print("Iteration: %d => %f" %
(step, batch_loss/self.batch_size))
step += 1
writer.add_scalar('Training Loss', training_loss /
(self.train_set_size//self.batch_size), epoch + 1)
self.prep_model.eval()
validation_loss = 0
tess_crt_count = 0
tess_CER = 0
with torch.no_grad():
for images, labels, names in self.loader_validation:
X_var = images.to(self.device)
img_preds = self.prep_model(X_var)
ocr_labels = self.ocr.get_labels(img_preds.detach().cpu())
loss = self._get_cer(ocr_labels, labels)
mean_loss = loss.mean(dim=0)
validation_loss += mean_loss.item()
tess_crt, tess_cer = compare_labels(ocr_labels, labels)
tess_crt_count += tess_crt
tess_CER += tess_cer
validation_step += 1
writer.add_scalar('Accuracy/'+self.ocr_name+'_output',
tess_crt_count/self.val_set_size, epoch + 1)
writer.add_scalar('WER and CER/'+self.ocr_name+'_CER',
tess_CER/self.val_set_size, epoch + 1)
writer.add_scalar('Validation Loss', validation_loss /
(self.val_set_size//self.batch_size), epoch + 1)
save_img(img_preds.cpu(), 'out_' +
str(epoch), properties.img_out_path)
if epoch == 0:
save_img(images.cpu(), 'out_original', properties.img_out_path)
print("%s correct count: %d; (validation set size:%d)" % (
self.ocr_name, tess_crt_count, self.val_set_size))
print("%s CER: %d;" % (self.ocr_name, tess_CER))
print("Epoch: %d/%d => Training loss: %f | Validation loss: %f" % ((epoch + 1),
self.epochs, training_loss /
(self.train_set_size //
self.batch_size),
validation_loss/(self.val_set_size//self.batch_size)))
torch.save(self.prep_model,
properties.prep_model_path + "Prep_model_"+str(epoch))
torch.save({
'epoch': epoch,
'prep_model_state_dict': self.prep_model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
}, properties.prep_model_path + "state_"+str(epoch))
writer.flush()
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Trains the SFE Prep with VGG dataset')
parser.add_argument('--batch_size', type=int,
default=32, help='input batch size')
parser.add_argument('--lr', type=float, default=0.00005,
help='prep model learning rate, not used by adadealta')
parser.add_argument('--epoch', type=int,
default=50, help='number of epochs')
parser.add_argument('--p', type=int,
default=5, help='number of purturbation samples')
parser.add_argument('--std', type=int,
default=0.05, help='standard deviation of Gussian noice added to images')
parser.add_argument('--prep_model', default='',
help="specify a trained prep model location. By default a new model will be used")
parser.add_argument('--ocr', default='EasyOCR',
help="performs training labels from given OCR [Tesseract,EasyOCR]")
parser.add_argument('--scalar', type=float, default=1,
help='scalar in which the secondary loss is multiplied')
args = parser.parse_args()
print(args)
start = datetime.datetime.now()
TrainSFEPrep(args).train()
end = datetime.datetime.now()
with open(properties.param_path, 'w') as filetowrite:
filetowrite.write(str(start) + '\n')
filetowrite.write(str(args) + '\n')
filetowrite.write(str(end) + '\n')