-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathloss.py
177 lines (141 loc) · 5.39 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
from torch.autograd.function import Function
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import Parameter
class OCAngleLayer(nn.Module):
""" Output layer to produce activation for one-class softmax
Usage example:
batchsize = 64
input_dim = 10
class_num = 2
l_layer = OCAngleLayer(input_dim)
l_loss = OCSoftmaxWithLoss()
data = torch.rand(batchsize, input_dim, requires_grad=True)
target = (torch.rand(batchsize) * class_num).clamp(0, class_num-1)
target = target.to(torch.long)
scores = l_layer(data)
loss = l_loss(scores, target)
loss.backward()
"""
def __init__(self, in_planes, w_posi=0.9, w_nega=0.2, alpha=20.0):
super(OCAngleLayer, self).__init__()
self.in_planes = in_planes
self.w_posi = w_posi
self.w_nega = w_nega
self.out_planes = 1
self.weight = Parameter(torch.Tensor(in_planes, self.out_planes))
# self.weight.data.uniform_(-1, 1).renorm_(2,1,1e-5).mul_(1e5)
nn.init.kaiming_uniform_(self.weight, 0.25)
self.weight.data.renorm_(2, 1, 1e-5).mul_(1e5)
self.alpha = alpha
def forward(self, input, flag_angle_only=False):
"""
Compute oc-softmax activations
input:
------
input tensor (batchsize, input_dim)
output:
-------
tuple of tensor ((batchsize, output_dim), (batchsize, output_dim))
"""
# w (feature_dim, output_dim)
w = self.weight.renorm(2, 1, 1e-5).mul(1e5)
# x_modulus (batchsize)
# sum input -> x_modules in shape (batchsize)
x_modulus = input.pow(2).sum(1).pow(0.5)
# w_modules (output_dim)
# w_moduls should be 1, since w has been normalized
# w_modulus = w.pow(2).sum(0).pow(0.5)
# W * x = ||W|| * ||x|| * cos())))))))
# inner_wx (batchsize, 1)
inner_wx = input.mm(w)
# cos_theta (batchsize, output_dim)
cos_theta = inner_wx / x_modulus.view(-1, 1)
cos_theta = cos_theta.clamp(-1, 1)
if flag_angle_only:
pos_score = cos_theta
neg_score = cos_theta
else:
pos_score = self.alpha * (self.w_posi - cos_theta)
neg_score = -1 * self.alpha * (self.w_nega - cos_theta)
#
return pos_score, neg_score
class OCSoftmaxWithLoss(nn.Module):
"""
OCSoftmaxWithLoss()
"""
def __init__(self):
super(OCSoftmaxWithLoss, self).__init__()
self.m_loss = nn.Softplus()
def forward(self, inputs, target):
"""
input:
------
input: tuple of tensors ((batchsie, out_dim), (batchsie, out_dim))
output from OCAngle
inputs[0]: positive class score
inputs[1]: negative class score
target: tensor (batchsize)
tensor of target index
output:
------
loss: scalar
"""
# Assume target is binary, positive = 1, negaitve = 0
#
# Equivalent to select the scores using if-elese
# if target = 1, use inputs[0]
# else, use inputs[1]
output = inputs[0] * target.view(-1, 1) + \
inputs[1] * (1 - target.view(-1, 1))
loss = self.m_loss(output).mean()
return loss
class OCSoftmax(nn.Module):
def __init__(self, feat_dim=2, r_real=0.9, r_fake=0.5, alpha=20.0):
super(OCSoftmax, self).__init__()
self.feat_dim = feat_dim
self.r_real = r_real
self.r_fake = r_fake
self.alpha = alpha
self.center = nn.Parameter(torch.randn(1, self.feat_dim))
nn.init.kaiming_uniform_(self.center, 0.25)
self.softplus = nn.Softplus()
def forward(self, x, labels, is_train=True):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (batch_size).
is_train: check if we are in in train mode.
"""
w = F.normalize(self.center, p=2, dim=1)
x = F.normalize(x, p=2, dim=1)
scores = x @ w.transpose(0,1)
output_scores = scores.clone()
if is_train:
scores[labels == 0] = self.r_real - scores[labels == 0]
scores[labels == 1] = scores[labels == 1] - self.r_fake
loss = self.softplus(self.alpha * scores).mean()
return loss, -output_scores.squeeze(1)
class AMSoftmax(nn.Module):
def __init__(self, num_classes, enc_dim, s=20, m=0.9):
super(AMSoftmax, self).__init__()
self.enc_dim = enc_dim
self.num_classes = num_classes
self.s = s
self.m = m
self.centers = nn.Parameter(torch.randn(num_classes, enc_dim))
def forward(self, feat, label):
batch_size = feat.shape[0]
norms = torch.norm(feat, p=2, dim=-1, keepdim=True)
nfeat = torch.div(feat, norms)
norms_c = torch.norm(self.centers, p=2, dim=-1, keepdim=True)
ncenters = torch.div(self.centers, norms_c)
logits = torch.matmul(nfeat, torch.transpose(ncenters, 0, 1))
y_onehot = torch.FloatTensor(batch_size, self.num_classes)
y_onehot.zero_()
y_onehot = Variable(y_onehot).cuda()
y_onehot.scatter_(1, torch.unsqueeze(label, dim=-1), self.m)
margin_logits = self.s * (logits - y_onehot)
return logits, margin_logits