-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathshap_heart_disease.R
94 lines (65 loc) · 2.65 KB
/
shap_heart_disease.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
library(tidyverse)
library(funModeling)
library(xgboost)
library(caret)
source("shap.R")
## Some data preparation
heart_disease_2=select(heart_disease, -has_heart_disease, -heart_disease_severity)
dmytr = dummyVars(" ~ .", data = heart_disease_2, fullRank=T)
heart_disease_3 = predict(dmytr, newdata = heart_disease_2)
target_var=ifelse(as.character(heart_disease$has_heart_disease)=="yes", 1,0)
## Create the xgboost model
model_hd = xgboost(data = heart_disease_3,
nround = 10,
objective = "binary:logistic",
label= target_var)
## Calculate shap values
shap_result = shap.score.rank(xgb_model = model_hd,
X_train = heart_disease_3,
shap_approx = F)
## Plot var importance
var_importance(shap_result, top_n=10)
## Prepare shap data
shap_long_hd = shap.prep(X_train = heart_disease_3 , top_n = 10)
## Plot shap overall metrics
plot.shap.summary(data_long = shap_long_hd)
# Note: The functions shap.score.rank, shap_long_hd and plot.shap.summary were
# originally published at https://liuyanguu.github.io/post/2018/10/14/shap-visualization-for-xgboost/
# All the credits to the author.
## Shap
xgb.plot.shap(data = heart_disease_3,
model = model_hd,
features = names(shap_result$mean_shap_score)[1:10],
n_col = 3,
plot_loess = T)
################################
# Dowload the file from here:
# https://github.com/christophM/interpretable-ml-book/blob/master/data/bike.RData
load("bike.RData")
bike_2=select(bike, -days_since_2011, -cnt, -yr)
bike_dmy = dummyVars(" ~ .", data = bike_2, fullRank=T)
bike_x = predict(bike_dmy, newdata = bike_2)
## Create the xgboost model
model_bike = xgboost(data = bike_x,
nround = 10,
objective="reg:linear",
label= bike$cnt)
## Calculate shap values
shap_result_bike = shap.score.rank(xgb_model = model_bike,
X_train =bike_x,
shap_approx = F
)
# `shap_approx` comes from `approxcontrib ` from xgboost documentation.
# Faster but less accurate if true. Read more: help(xgboost)
## Plot var importance
var_importance(shap_result_bike, top_n=10)
## Prepare shap data
shap_long_bike = shap.prep(X_train = bike_x , top_n = 10)
## Plot shap overall metrics
plot.shap.summary(data_long = shap_long_bike)
##
xgb.plot.shap(data = bike_x,
model = model_bike,
features = names(shap_result_bike$mean_shap_score[1:10]),
n_col = 3, plot_loess = T)
ggplotgui::ggplot_shiny(bike)