-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIEADstarSurrogateError.m
198 lines (149 loc) · 5.52 KB
/
IEADstarSurrogateError.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The function IEADstarSurrogateError computes and plots the error
% of the IEAD* surrogate model against (training or testing) data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input
% -----
% sglevel: data sparse grid level
% dim: dimension of parameter space
% 2D: dim = 2
% 4D: dim = 4
% data_type: 'train' for training data and 'test' for testing data
% Author: Pablo Seleson
% ------
% Last Modified: March 9, 2022
% -------------
function IEADstarSurrogateError(sglevel,dim,data_type)
close all
% ====================================================================
% Load IEAD data
% ====================================================================
IEAD_data_filename = ['IEAD_data_' num2str(dim) 'D/Level_' num2str(sglevel) '_' data_type '.mat'];
load(IEAD_data_filename)
% Number of bins
dimXstar = length(XNODESstar);
dimYstar = length(YNODESstar);
% ====================================================================
% Evaluate IEAD* surrogate model at the grid points
% ====================================================================
% Reload IEAD* fit grid
gridname = ['LS_' num2str(dim) 'D_Grid_IEADstar_level_' num2str(sglevel)];
[lGrid_IEADstar] = tsgReloadGrid(gridname);
if dim == 2
% Evaluate 2D IEAD* surrogate model at the 2D grid points
[result_all] = tsgEvaluate(lGrid_IEADstar, [points(:,1) points(:,2)]);
else
% Evaluate 4D IEAD* surrogate model at the 4D grid points
[result_all] = tsgEvaluate(lGrid_IEADstar, [points(:,1) points(:,2) points(:,3) points(:,4)]);
end
% Number of cases
ncases = length(points);
% Initialize error norm array
l2_err_norm = zeros(ncases,1);
% Compute bin areas
xstarmin = -5;
xstarmax = 5;
ystarmin = -5;
ystarmax = 5;
[~,~,~,pareastar] = compute_2D_NU_distribution(0,0,XNODESstar,YNODESstar,xstarmin,xstarmax,ystarmin,ystarmax);
% Run over cases
for ncase = 1:ncases
% ----------------------------------
% Read data and fit
% ----------------------------------
% Data
IEADstar = reshape(IEADstar_array(ncase,:),dimXstar,dimYstar);
% Fit
result = result_all(ncase,:);
IEADstar_fit = reshape(result,dimXstar,dimYstar);
% ----------------------------------
% Compute error
% ----------------------------------
Err = IEADstar_fit - IEADstar;
% Note: The norms apply weights given by the bin areas
l2_err_norm(ncase) = sqrt(sum(sum((Err.^2).*pareastar)))/sqrt(sum(sum((IEADstar.^2).*pareastar)));
end
% ====================================================================
% Plot errors
% ====================================================================
% --------------------------------
% Error histogram
% --------------------------------
% Create figure
fig1 = figure;
axes1 = axes('Parent',fig1);
hold(axes1,'all');
set(axes1,'FontSize',20);
% Plot histogram
histogram(l2_err_norm);
% xlabel
xlabel('Rel. $L^2$ norm of IEAD* Error','Interpreter','latex','Fontsize',24)
box('on')
% Position figure
set(gcf, 'Position', [600, 500, 600, 500])
% Draw vertical lines at mean and mean +/- 1 standard deviation
yl = ylim;
mu = mean(l2_err_norm);
sigma = std(l2_err_norm);
plot([mu mu],yl,'--r','LineWidth',3);
plot([mu+sigma mu+sigma],yl,':r','LineWidth',2);
plot([mu-sigma mu-sigma],yl,':r','LineWidth',2);
% Set axis limits
if strcmp(data_type,'train')
if dim == 2
xlim([-.002 0.146])
xticks([0 0.05 0.1])
else
xlim([-.002 0.48])
end
elseif strcmp(data_type,'test')
if dim == 2
xlim([0.0045 0.251])
else
xlim([-.002 0.55])
end
else
error('data_type should be train or test.')
end
% --------------------------------
% Errors scatter plot on 2D grid
% --------------------------------
if dim == 2
% Create figure
fig2 = figure;
axes2 = axes('Parent',fig2);
hold(axes2,'all');
set(axes2,'FontSize',20);
% Set colormap and color limits
cm = colormap(cool);
if strcmp(data_type,'train')
maxz = 0.15;
elseif strcmp(data_type,'test')
maxz = 0.22;
else
error('data_type should be train or test.')
end
caxis([0 maxz]);
% Create colors based on data
zref = linspace(0,maxz,length(cm));
z = l2_err_norm;
[~, Ivals] = min(abs(z' - zref'));
pColor = cm(Ivals,:);
% Points sizes
pSize = 200*Ivals/length(cm);
% Scatter plot
scatter(points(:,1),points(:,2),pSize,pColor,'s','filled');
% Other settings
axis([min(points(:,1)) max(points(:,1)) min(points(:,2)) max(points(:,2))])
xlabel('$\log_{10}(T_e/T_i)$','Interpreter','latex','Fontsize',24)
ylabel('$\Psi$','Interpreter','latex','Fontsize',24)
colorbar
box('on')
% Colorbar title
hcb=colorbar;
hcb.Title.String = "$e$";
set(hcb.Title,'FontSize',30,'Interpreter','latex')
% Position figure
set(gcf, 'Position', [1300, 500, 600, 500])
end
end