-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalysis_functions_definitions.py
579 lines (494 loc) · 25 KB
/
analysis_functions_definitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import numpy as np
from scipy import stats
def pol2cart(theta, rho):
x = rho * np.cos(theta)
y = rho * np.sin(theta)
return x, y
def cart2pol(x, y):
rho = np.sqrt(x ** 2 + y ** 2)
phi = np.arctan2(y, x)
return (rho, phi)
def index_to_dist(i1, i2, grid):
return distance((i1 // grid[0], i1 % grid[1]), (i2 // grid[0], i2 % grid[1]), grid=grid, type='euclidian')
def polar_connectivity(conn_list, grid):
polar_conn = []
for source, target, weight, delay in conn_list:
s_x = np.asarray((source // grid[0], source % grid[1]))
t_y = np.asarray((target // grid[0], target % grid[1]))
dif = s_x - t_y
s_p, t_p = cart2pol(dif[0], dif[1])
polar_conn.append((s_p, t_p, weight, delay,
distance(s_x, t_y, grid=grid, type='euclidian')))
return polar_conn
def radial_sample(in_matrix, samplenum):
_, insize = in_matrix.shape
centre = int(insize / 2. + .5 - 1)
sampleradius = np.floor(insize / 2.)
out = np.zeros(int(sampleradius))
angles = np.linspace(0, 2 * np.pi, 100)
dists = np.arange(0, sampleradius)
for angle in angles:
for dist in dists:
tempx, tempy = pol2cart(angle, dist)
yceil = int(np.ceil(tempy))
yfloor = int(np.floor(tempy))
xceil = int(np.ceil(tempx))
xfloor = int(np.floor(tempx))
if yceil == yfloor:
if xceil == xfloor:
sample = in_matrix[
int(yceil + centre), int(xceil + centre)]
else:
sample = in_matrix[yceil + centre, xfloor + centre] * \
np.mod(tempx, 1) + in_matrix[
yceil + centre, xceil + centre] * \
(1 - np.mod(tempx, 1))
else:
if xceil == xfloor:
sample = in_matrix[yfloor + centre, xceil + centre] * \
np.mod(tempy, 1) + in_matrix[
yceil + centre, xceil + centre] * \
(1 - np.mod(tempy, 1))
else:
yfloorsample = in_matrix[
yfloor + centre, xfloor + centre] * \
np.mod(tempx, 1) + in_matrix[
yfloor + centre, xceil + centre] * \
(1 - np.mod(tempx, 1))
yceilsample = in_matrix[
yceil + centre, xfloor + centre] * np.mod(
tempx, 1) + in_matrix[
yceil + centre, xceil + centre] * (
1 - np.mod(tempx, 1))
sample = yfloorsample * np.mod(tempy, 1) + yceilsample * (
1 - np.mod(tempy, 1))
out[int(dist)] = out[int(dist)] + sample
return out / float(samplenum)
# Function definitions
def conn_matrix_to_fan_in(conn_matrix, mode):
conn_matrix = np.copy(conn_matrix)
ys = int(np.sqrt(conn_matrix.shape[0]))
xs = int(np.sqrt(conn_matrix.shape[1]))
fan_in = np.zeros((ys ** 2, xs ** 2))
locations = np.asarray(np.where(np.isfinite(conn_matrix)))
for row in range(ys):
for column in range(xs):
if 'conn' in mode:
fan_in[ys * row:ys * (row + 1),
xs * column: xs * (column + 1)] = np.nan_to_num(
conn_matrix[:, row * xs + column].reshape(16, 16)) / g_max
else:
fan_in[ys * row:ys * (row + 1),
xs * column: xs * (column + 1)] = np.nan_to_num(
conn_matrix[:, row * xs + column].reshape(16, 16))
return fan_in
def centre_weights(in_star_all, n1d):
in_star_all = np.copy(in_star_all)
half_range = n1d // 2
mean_projection = np.zeros((n1d + 1, n1d + 1))
mean_centred_projection = np.zeros((n1d + 1, n1d + 1))
positions = np.arange(-half_range, half_range + 1)
means_and_std_devs = np.zeros((n1d ** 2, 8))
means_for_plot = np.ones((n1d ** 2 * 2 - 1, 2)) * np.nan
std_devs_xs = np.zeros(n1d)
std_devs_ys = np.zeros(n1d)
std_devs_xs_fine = np.zeros(11)
std_devs_ys_fine = np.zeros(11)
for y in range(n1d):
for x in range(n1d):
in_star = np.copy(
in_star_all[y * n1d:(y + 1) * n1d, x * n1d:(x + 1) * n1d])
in_star_extended = np.tile(in_star, [3, 3])
if np.sum(in_star) > 0:
# Add to the mean projection
ideal_centred = np.copy(in_star_extended[
n1d + y - half_range: n1d + y + half_range + 1,
n1d + x - half_range:n1d + x + half_range + 1])
ideal_centred[0, :] = ideal_centred[0, :] / 2.
ideal_centred[n1d, :] = ideal_centred[n1d, :] / 2.
ideal_centred[:, 0] = ideal_centred[:, 0] / 2.
ideal_centred[:, n1d] = ideal_centred[:, n1d] / 2.
mean_projection += ideal_centred
# ^^ So far so good ^^
# Find the coarse centre of mass
for pos in range(n1d):
temp_centred = np.copy(in_star_extended[
n1d + pos - half_range: n1d + pos + half_range + 1,
n1d + pos - half_range:n1d + pos + half_range + 1])
# correct the edges of centred
temp_centred[0, :] = temp_centred[0, :] / 2.
temp_centred[n1d, :] = temp_centred[n1d, :] / 2.
temp_centred[:, 0] = temp_centred[:, 0] / 2.
temp_centred[:, n1d] = temp_centred[:, n1d] / 2.
# calculate the StdDev
centred_x = np.sum(temp_centred, axis=0)
centred_y = np.sum(temp_centred, axis=1)
std_devs_xs[pos] = np.sqrt(
np.sum(centred_x * (positions ** 2)) / np.sum(
centred_x));
std_devs_ys[pos] = np.sqrt(
np.sum(centred_y * (positions ** 2)) / np.sum(
centred_y));
std_dev_x = np.min(std_devs_xs)
pos_x = np.argmin(std_devs_xs)
std_dev_y = np.min(std_devs_ys)
pos_y = np.argmin(std_devs_ys)
# print pos_x, pos_y
# print std_dev_x, std_dev_y
# reconstruct the coarsely centred receptive field
centred_coarse = np.copy(in_star_extended[
n1d + pos_y - half_range:n1d + pos_y + half_range + 1,
n1d + pos_x - half_range:n1d + pos_x + half_range + 1])
centred_coarse[0, :] = centred_coarse[0, :] / 2.
centred_coarse[n1d, :] = centred_coarse[n1d, :] / 2.
centred_coarse[:, 0] = centred_coarse[:, 0] / 2.
centred_coarse[:, n1d] = centred_coarse[:, n1d] / 2.
for pos_fine in np.linspace(-.5, .5, 11):
assert std_devs_xs[
pos_x] == std_dev_x, "{0} != {1}".format(
std_devs_xs[pos_x], std_dev_x)
assert std_devs_ys[
pos_y] == std_dev_y, "{0} != {1}".format(
std_devs_ys[pos_y], std_dev_y)
temp_centred_fine = np.copy(in_star_extended[
n1d + pos_y - half_range: n1d + pos_y + half_range + 1,
n1d + pos_x - half_range:n1d + pos_x + half_range + 1])
# correct the edges of centred
temp_centred_fine[0, :] = temp_centred_fine[0, :] * (
.5 - pos_fine)
temp_centred_fine[n1d, :] = temp_centred_fine[n1d, :] * (
.5 + pos_fine)
temp_centred_fine[:, 0] = temp_centred_fine[:, 0] * (
.5 - pos_fine)
temp_centred_fine[:, n1d] = temp_centred_fine[:, n1d] * (
.5 + pos_fine)
# calculate the StdDev
centred_x = np.sum(temp_centred_fine, axis=0)
centred_y = np.sum(temp_centred_fine, axis=1)
positions_fine = np.arange(-half_range,
half_range + 1) - pos_fine
positions_fine = positions_fine.flatten()
std_devs_xs_fine[
int(np.round(pos_fine * 10) + 5)] = np.sqrt(
np.sum(centred_x * (positions_fine ** 2)) / np.sum(
centred_x))
std_devs_ys_fine[
int(np.round(pos_fine * 10) + 5)] = np.sqrt(
np.sum(centred_y * (positions_fine ** 2)) / np.sum(
centred_y))
# assert np.isclose(std_dev_x, std_devs_xs_fine[5]), "{0} != {1}".format(
# std_dev_x, std_devs_xs_fine[5])
# assert np.isclose(std_dev_y, std_devs_ys_fine[5]), "{0} != {1}".format(
# std_dev_y, std_devs_ys_fine[5])
std_dev_x = np.min(std_devs_xs_fine)
pos_x_fine = np.argmin(std_devs_xs_fine)
std_dev_y = np.min(std_devs_ys_fine)
pos_y_fine = np.argmin(std_devs_ys_fine)
pos_x_fine = (pos_x_fine - 5) / 10.
pos_y_fine = (pos_y_fine - 5) / 10.
# reconstruct the finely centred receptive field
# and add to the mean centred projection
second_to_first_indices = np.concatenate(
(np.arange(1, n1d + 1), [0]))
last_to_first_indices = np.concatenate(
([n1d], np.arange(0, n1d))) # checked
centred_left = centred_coarse[:, second_to_first_indices]
centred_right = centred_coarse[:, last_to_first_indices]
centred_fine_x = centred_left * np.max([0., -pos_x_fine]) + \
centred_coarse * (1. - np.abs(pos_x_fine)) + \
centred_right * np.max([0., pos_x_fine])
centred_up = centred_fine_x[second_to_first_indices, :]
centred_down = centred_fine_x[last_to_first_indices, :]
centred_fine = centred_up * np.max([0., -pos_y_fine]) + \
centred_fine_x * (1. - np.abs(pos_y_fine)) + \
centred_down * np.max([0., pos_y_fine])
mean_centred_projection += centred_fine
std_dev = np.mean([std_dev_x, std_dev_y])
mean_x = pos_x + pos_x_fine - x
mean_y = pos_y + pos_y_fine - y
if mean_x > half_range:
mean_x = mean_x - n1d
if mean_x < -half_range:
mean_x = mean_x + n1d
if mean_y > half_range:
mean_y = mean_y - n1d
if mean_y < -half_range:
mean_y = mean_y + n1d
mean_dist = np.sqrt(mean_x ** 2 + mean_y ** 2)
else:
mean_x = 0
mean_y = 0
mean_dist = 0
std_dev = 0
# For quiver plots
if mean_dist == 0:
means_and_std_devs[y * n1d + x, :] = np.asarray(
[x, y, mean_x, mean_y, mean_dist, std_dev, 0, 0])
else:
means_and_std_devs[y * n1d + x, :] = np.asarray(
[x, y, mean_x, mean_y, mean_dist, std_dev,
mean_x / mean_dist, mean_y / mean_dist])
# For mapping plots
Y = y + 1
X = x + 1
means_for_plot[(Y - 1) * n1d + X * np.remainder(Y, 2) +
(n1d + 1 - X) * np.remainder(Y - 1, 2) - 1,
:] = [X + mean_x, Y + mean_y]
means_for_plot[(X - 1) * n1d + Y * np.remainder(X - 1, 2) + (
n1d + 1 - Y) * np.remainder(
X, 2) + n1d ** 2 - 1 - 1, :] = [X + mean_x, Y + mean_y]
# return (mean_projection/(n1d**2), std_dev)
mean_projection = mean_projection / (n1d ** 2.)
mean_centred_projection /= (n1d ** 2.)
return (mean_projection, means_and_std_devs, means_for_plot,
mean_centred_projection)
def fan_in(conn, weight, mode, area):
conn = np.copy(conn).astype(np.int32)
if 'rec' in area:
conn[conn <= 255] = -1
if 'ff' in area:
conn[conn > 255] = -1
output = np.zeros((256, 256))
for syn in range(conn.shape[0]):
for post_x in range(16):
for post_y in range(16):
pre_loc = int(conn[syn, post_x * 16 + post_y])
if pre_loc >= 0:
pre_loc = np.mod(pre_loc, 256)
pre_x = int(np.floor(pre_loc / 16.))
pre_y = np.mod(pre_loc, 16)
# print pre_x, pre_y, post_x, post_y
# break
if 'conn' in mode:
output[post_x * 16 + pre_x, post_y * 16 + pre_y] += 1
else:
output[post_x * 16 + pre_x, post_y * 16 + pre_y] += \
weight[syn, post_x * 16 + post_y]
return output
def distance(x0, x1, grid=np.asarray([16, 16]), type='euclidian'):
x0 = np.asarray(x0)
x1 = np.asarray(x1)
delta = np.abs(x0 - x1)
delta = np.where(delta > grid * .5, delta - grid, delta)
if type == 'manhattan':
return np.abs(delta).sum(axis=-1)
return np.sqrt((delta ** 2).sum(axis=-1))
def weight_shuffle(conn, weights, area):
weights_copy = weights.copy()
for post_id in range(weights_copy.shape[1]):
pre_ids = conn[:, post_id]
pre_weights = weights_copy[:, post_id]
within_row_filter = np.argwhere(
np.logical_and(pre_ids >= 0, pre_ids <= 255))
permutation = np.random.permutation(within_row_filter)
for index in range(within_row_filter.size):
weights_copy[permutation[index], post_id] = weights[
within_row_filter[index], post_id]
return weights_copy
def correct_smax_list_to_post_pre(ff_list, lat_list, s_max, N_layer):
return list_to_post_pre(ff_list, lat_list, int(s_max / 2), N_layer)
def list_to_post_pre(ff_list, lat_list, s_max, N_layer):
conn = np.ones((s_max * 2, N_layer)) * -1
weight = np.zeros((s_max * 2, N_layer))
for target in range(N_layer):
# source ids
ff_pre_ids = ff_list[ff_list[:, 1] == target][:, 0]
if lat_list.size > 0:
lat_pre_ids = lat_list[lat_list[:, 1] == target][:, 0] + N_layer
lat_pre_weights = lat_list[lat_list[:, 1] == target][:, 2]
else:
lat_pre_ids = np.asarray([])
lat_pre_weights = np.asarray([])
conn[:ff_pre_ids.size + lat_pre_ids.size, target] \
= np.concatenate((ff_pre_ids, lat_pre_ids))[:s_max * 2]
# weights
ff_pre_weights = ff_list[ff_list[:, 1] == target][:, 2]
weight[:ff_pre_weights.size + lat_pre_weights.size, target] \
= np.concatenate((ff_pre_weights, lat_pre_weights))[:s_max * 2]
return conn, weight
def odc(fan_in_mat, mode=None):
n1d = int(np.sqrt(fan_in_mat.shape[0]))
odc_mask = np.zeros((n1d, n1d))
for pre_y in range(n1d):
for pre_x in range(n1d):
odc_mask[pre_y, pre_x] = np.mod(pre_x + pre_y, 2)
output = np.zeros((n1d, n1d))
for post_y in range(n1d):
for post_x in range(n1d):
fan_in_temp = fan_in_mat[post_y * n1d:(post_y + 1) * n1d,
post_x * n1d:(post_x + 1) * n1d]
if mode and 'NORMALISE' in mode.upper():
temp = np.sum(np.sum(fan_in_temp * odc_mask)) / np.sum(
np.sum(np.logical(fan_in_temp * odc_mask))) / np.sum(
np.sum(fan_in_temp)) * np.sum(
np.sum(np.logical(fan_in_temp)))
temp[np.where(np.isnan(temp))] = 1.
output[post_y, post_x] = (1. / (1 + np.exp(-temp)) - 0.5) * 2
else:
output[post_y, post_x] = np.sum(
np.sum(fan_in_temp * odc_mask)) / np.sum(np.sum(fan_in_temp))
output[np.where(np.isnan(output))] = .5
return output
def compute_all_average_responses_with_angle(per_neuron_all_rates, angles, N_layer):
all_average_responses_with_angle = np.empty((N_layer, angles.size, 2))
for angle in angles:
current_angle_responses = per_neuron_all_rates[angle // 5].reshape(
N_layer, per_neuron_all_rates[angle // 5].shape[0] // N_layer)
for i in range(N_layer):
current_response = current_angle_responses[i, :]
all_average_responses_with_angle[i, angle // 5, 0] = np.mean(
current_response)
all_average_responses_with_angle[i, angle // 5, 1] = stats.sem(
current_response)
max_average_responses_with_angle = np.empty((N_layer))
sem_responses_with_angle = np.empty((N_layer))
for i in range(N_layer):
max_average_responses_with_angle[i] = np.argmax(
all_average_responses_with_angle[i, :, 0]) * 5
sem_responses_with_angle[i] = all_average_responses_with_angle[
i, int(max_average_responses_with_angle[i] // 5), 1]
return all_average_responses_with_angle, max_average_responses_with_angle, sem_responses_with_angle
def get_per_angle_responses(per_neuron_all_rates, angle, N_layer):
current_angle_responses = per_neuron_all_rates[angle // 5].reshape(
N_layer, per_neuron_all_rates[angle // 5].shape[0] // N_layer)
return current_angle_responses
def get_omnidirectional_neural_response_for_neuron(neuron_id, per_neuron_all_rates, angles, N_layer):
neuron_id = int(neuron_id)
response_profile = np.empty(angles.size)
for angle in angles:
current_angle_responses = get_per_angle_responses(per_neuron_all_rates, angle, N_layer)
current_response = current_angle_responses[neuron_id, :]
response_profile[angle // 5] = np.mean(current_response)
return response_profile
def get_concatenated_dsis(dsi_selective, dsi_not_selective, order_by_id=False):
if dsi_selective.size > 0 and dsi_not_selective.size > 0:
all_dsi = np.concatenate((dsi_selective[:, -1], dsi_not_selective[:, -1]))
all_ids = np.concatenate((dsi_selective[:, 0], dsi_not_selective[:, 0]))
elif dsi_selective.size == 0:
all_dsi = dsi_not_selective[:, -1]
all_ids = dsi_not_selective[:, 0]
else:
all_dsi = dsi_selective[:, -1]
all_ids = dsi_selective[:, 0]
if order_by_id:
argsorter = np.argsort(all_ids)
all_dsi = all_dsi[argsorter]
return all_dsi
def backward_compatibility_get_dsi(per_neuron_all_rates, angles, N_layer):
from gari_analysis_functions import get_filtered_dsi_per_neuron
all_average_responses_with_angle, _, _ = compute_all_average_responses_with_angle(per_neuron_all_rates,
angles, N_layer)
dsi_selective, dsi_not_selective = get_filtered_dsi_per_neuron(all_average_responses_with_angle, N_layer)
dsi_selective = np.asarray(dsi_selective)
dsi_not_selective = np.asarray(dsi_not_selective)
return dsi_selective, dsi_not_selective
def compute_per_neuron_entropy(per_neuron_all_rates, angles, N_layer):
entropy = np.empty((N_layer))
for nid in range(N_layer):
# Retrieve the firing profile of this neuron
profile = get_omnidirectional_neural_response_for_neuron(nid, per_neuron_all_rates, angles, N_layer)
normalised_profile = profile / np.sum(profile)
current_sum = 0
for normed_rate in normalised_profile:
if not np.less(normed_rate, 0.0001):
current_sum += (normed_rate * np.log2(normed_rate))
entropy[nid] = -current_sum
return entropy
def get_max_entropy(angles):
return -np.log2(1. / angles.size)
def get_number_of_afferents(N_layer, ff_num_network, lat_num_network):
number_of_afferents = np.empty(N_layer)
for index, value in np.ndenumerate(number_of_afferents):
number_of_afferents[index] = np.nansum(
ff_num_network[:, index[0]]) + np.nansum(
lat_num_network[:, index[0]])
return number_of_afferents
def get_number_of_afferents_from_list(N_layer, ff_list, lat_list):
number_of_afferents = np.empty(N_layer)
for index, value in np.ndenumerate(number_of_afferents):
if len(lat_list) > 0:
lat_tmp = lat_list[lat_list[:, 1] == index]
lat_afferents = lat_tmp.shape[0] if lat_tmp.size > 0 else 0
else:
lat_afferents = 0
number_of_afferents[index] = ff_list[ff_list[:, 1] == index].shape[0] + lat_afferents
return number_of_afferents
# From spynnaker8.neo_convertor. Including here because otherwise one needs to install the whole tool-chain
def convert_spikes(neo, run=0):
""" Extracts the spikes for run one from a Neo Object
:param neo: neo Object including Spike Data
:param run: Zero based index of the run to extract data for
:type run: int
:rtype: nparray
"""
if len(neo.segments) <= run:
raise ValueError(
"Data only contains {} so unable to run {}. Note run is the "
"zero based index.".format(len(neo.segments), run))
return convert_spiketrains(neo.segments[run].spiketrains)
def convert_spiketrains(spiketrains):
""" Converts a list of spiketrains into spynakker7 format
:param spiketrains: List of SpikeTrains
:rtype: nparray
"""
if len(spiketrains) == 0:
return np.empty(shape=(0, 2))
neurons = np.concatenate(
list(map(lambda x: np.repeat(x.annotations['source_index'], len(x)),
spiketrains)))
spikes = np.concatenate(list(map(lambda x: x.magnitude, spiketrains)))
return np.column_stack((neurons, spikes))
def get_max_dsi(neuron_id, per_neuron_all_rates, angles, N_layer, look_at_specific_angles=None):
'''
Simple DSI search from the firing profile of a neuron
$DSI = (R_{pref} - R_{null}) / R_{pref}$, where
$R_{pref}$ is the response of a neuron in the preferred direction, and
$R_{null}$ is the response in the opposite direction
'''
current_neuron_response = get_omnidirectional_neural_response_for_neuron(
neuron_id, per_neuron_all_rates, angles, N_layer)
null_responses = np.roll(current_neuron_response, 180 // 5)
all_dsis = (current_neuron_response - null_responses) / current_neuron_response
if look_at_specific_angles:
look_at_specific_angles = np.asarray(look_at_specific_angles)
look_at_specific_positions = look_at_specific_angles/5
nan_mask = np.ones(all_dsis.shape) * np.nan
nan_mask[look_at_specific_positions] = 1
masked_all_dsis = all_dsis * nan_mask
if np.all(np.isnan(masked_all_dsis)):
return np.nan, np.nan
return np.nanmax(masked_all_dsis), np.nanargmax(masked_all_dsis) * 5
if np.all(np.isnan(all_dsis)):
return np.nan, np.nan
return np.nanmax(all_dsis), np.nanargmax(all_dsis) * 5
def get_all_dsi(per_neuron_all_rates, angles, N_layer, look_at_specific_angles=None):
all_simple_dsis = []
for nid in range(N_layer):
max_dsi, argmax_dsi = get_max_dsi(nid, per_neuron_all_rates, angles, N_layer,
look_at_specific_angles=look_at_specific_angles)
# appending neuron id, angle for which DSI is maximum and the associated DSI
all_simple_dsis.append([nid, argmax_dsi, max_dsi])
return np.asarray(all_simple_dsis)
def connectivity_stats_single_connection(conn_set, weight_mask, N_layer, all_connectivity, all_weights, all_delays):
for connection in conn_set:
source = int(connection[0])
target = int(connection[1])
weight = connection[2]
delay = float(connection[3])
all_connectivity[source, target] += 1
all_weights[source, target] += (weight_mask * weight)
all_delays[source, target] += delay
def compute_connectivity_statistics(conns, weight_mask, N_layer):
if not weight_mask:
weight_mask = np.ones(conns.shape)
assert len(conns) == len(weight_mask)
all_connectivity = np.zeros((N_layer, N_layer))
all_weights = np.zeros((N_layer, N_layer))
all_delays = np.zeros((N_layer, N_layer))
for conn_set_id, conn_set in np.ndenumerate(conns):
if conn_set.size > 0:
connectivity_stats_single_connection(conn_set, weight_mask[conn_set_id[0]], N_layer,
all_connectivity,
all_weights,
all_delays)
return all_connectivity, all_weights, all_delays