-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfigure.py
56 lines (47 loc) · 2.12 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
"""This script defines hyperparameters.
"""
def configure():
flags = tf.app.flags
# training
flags.DEFINE_string('raw_data_dir', '/data/zhengyang/InfantBrain/RawData',
'the directory where the raw data is stored')
flags.DEFINE_string('data_dir', '/data/zhengyang/InfantBrain/tfrecords_full',
'the directory where the input data is stored')
flags.DEFINE_integer('num_training_subs', 9,
'the number of subjects used for training')
flags.DEFINE_integer('train_epochs', 100000,
'the number of epochs to use for training')
flags.DEFINE_integer('epochs_per_eval', 5000,
'the number of training epochs to run between evaluations')
flags.DEFINE_integer('batch_size', 5,
'the number of examples processed in each training batch')
flags.DEFINE_float('learning_rate', 1e-3, 'learning rate')
flags.DEFINE_float('weight_decay', 2e-6, 'weight decay rate')
flags.DEFINE_integer('num_parallel_calls', 5,
'The number of records that are processed in parallel \
during input processing. This can be optimized per data set but \
for generally homogeneous data sets, should be approximately the \
number of available CPU cores.')
flags.DEFINE_string('model_dir', './model-10',
'the directory where the model will be stored')
# validation / prediction
flags.DEFINE_integer('patch_size', 32, 'spatial size of patches')
flags.DEFINE_integer('overlap_step', 8,
'overlap step size when performing validation/prediction')
flags.DEFINE_integer('validation_id', 10,
'1-10 or -1, which subject is used for validation')
flags.DEFINE_integer('prediction_id', 11,
'1-23, which subject is used for prediction')
flags.DEFINE_integer('checkpoint_num', 153000,
'which checkpoint is used for validation/prediction')
flags.DEFINE_string('save_dir', './results',
'the directory where the prediction is stored')
# network
flags.DEFINE_integer('network_depth', 3, 'the network depth')
flags.DEFINE_integer('num_classes', 4, 'the number of classes')
flags.DEFINE_integer('num_filters', 32,
'number of filters for initial_conv')
flags.FLAGS.__dict__['__parsed'] = False
return flags.FLAGS
conf = configure()