-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadDat.R
679 lines (591 loc) · 25.6 KB
/
readDat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# Kenya U5MR
# setwd("~/Google Drive/UW/Wakefield/WakefieldShared/U5MR/")
# library(foreign)
# read in the STATA data:
# DHS recode manual:
# https://dhsprogram.com/pubs/pdf/DHSG4/Recode6_DHS_22March2013_DHSG4.pdf
# ?:
# https://dhsprogram.com/pubs/pdf/SAR8/SAR8.pdf
# final report:
# https://dhsprogram.com/pubs/pdf/FR308/FR308.pdf
library(haven)
library(fields)
library(zoo)
library(latex2exp)
library(maptools)
library(data.table)
wd = getwd()
setwd("~/Google Drive/UW/Wakefield/WakefieldShared/U5MR/")
# lines represent births
data <- data.frame(read_dta("Kenya2014BirthRecode/KEBR70FL.DTA"))
# extract the columns of interest
# b1 - month of birth of child,
# b2 - year of birth of child,
# b4 - gender of child, # TODO: important?
# b5 - child alive at time of interview,
# b7 - age of child at death in months completed,
# v024 - region of residence
# v025 - type of place of residence urban rural (32.3% of pop. is urban in 2009 and 2014, see FR p.30/2)
# v001 - cluster number (in theory there are 1,612 total. In actuality there are 1,593)
# v002 - household number
# v005 - sample weight out of 1000000. normalized weights sum to number of households
# v006 - month of interview
# V007 - year of interview
# V136 - total number of household members
# V138 - number of women in the household aged 15 to 49
# V137 - number of children in the household aged 5 or under
subdata <- data.frame(data[,c('b2', 'b1', 'b5', 'b7', 'v024', 'v025', 'v001', 'v002', 'v005', 'v006', 'v007')])
# extract births in the range 2005 to 2010 (most recent five years)
lowYear <- 2005
highYear <- 2009
subdata <- subdata[(subdata[,'b2'] >= lowYear & subdata[,'b2'] <= highYear),]
# only consider children that died within their first year
died = !is.na(subdata[,'b7'])
totalChildren = nrow(subdata)
subdata = subdata[died,]
subdata <- subdata[subdata[,'b7'] < 12,]
totalFirstYearDied = nrow(subdata)
averageFirstYearMortality = totalFirstYearDied / totalChildren
print(paste0("Average first year mortality: ", averageFirstYearMortality))
# do the same thing for first month
subdata <- data.frame(data[,c('b2', 'b1', 'b5', 'b7', 'v024', 'v025', 'v001', 'v002', 'v005', 'v006', 'v007')])
# extract births in the range 2005 to 2010 (most recent five years)
lowYear <- 2010
highYear <- 2014
subdata <- subdata[(subdata[,'b2'] >= lowYear & subdata[,'b2'] <= highYear),]
# only consider children that died within their first month
died = !is.na(subdata[,'b7'])
totalChildren = nrow(subdata)
subdata = subdata[died,]
subdata <- subdata[subdata[,'b7'] < 1,]
totalFirstMonthDied = nrow(subdata)
averageFirstMonthMortality = totalFirstMonthDied / totalChildren # 0.03909
print(paste0("Average first month mortality: ", averageFirstMonthMortality)) # 0.02159
print(paste0("Average first month mortality rate: ", averageFirstMonthMortality * 12)) # 0.259
# subset by urban/rural
subdata <- data.frame(data[,c('b2', 'b1', 'b5', 'b7', 'v024', 'v025', 'v001', 'v002', 'v005', 'v006', 'v007')])
# extract births in the range 2005 to 2010 (most recent five years)
lowYear <- 2005
highYear <- 2009
subdata <- subdata[(subdata[,'b2'] >= lowYear & subdata[,'b2'] <= highYear),]
# separate urban and rural births
urban = subdata$v025 == 1
urbanData = subdata[urban,]
ruralData = subdata[!urban,]
totalUrbanChildren = nrow(urbanData)
totalRuralChildren = nrow(ruralData)
urbanDied = urbanData[!is.na(urbanData$b7),]
ruralDied = ruralData[!is.na(ruralData$b7),]
firstYearUrban = nrow(urbanDied[urbanDied$b7 < 12,])
firstYearRural = nrow(ruralDied[ruralDied$b7 < 12,])
print(paste0("Average first year mortality urban: ", firstYearUrban / totalUrbanChildren)) # 0.03819
print(paste0("Average first year mortality rural: ", firstYearRural / totalRuralChildren)) # 0.03949
# add a column for the stratification variable as an interaction between
# the urban/rural indicator 'v025' (1: urban, 2:rural) and the region indicator 'v024'
subdata$regionUral <- with(subdata, interaction(v024, v025), drop=TRUE)
# add a column for the unique households with interaction between
# the household indicator 'v002' and the cluster indicator 'v001'
subdata$hhold <- with(subdata, interaction(v001, v002), drop=TRUE)
## find for each cluster the regionUral indicator
clStrat = subdata[,c("v001", "regionUral", "v024", "v025")]
clStrat = clStrat[!duplicated(clStrat), ]
colnames(clStrat) = c("clusterid", "regionRural", "region", "urban-rural")
# get age of child at the end of 2003 to 2007 period in months
subdata$cage = 12*(2008 - subdata[,"b2"]) + (1 - subdata[,"b1"])
# if child didn't die during time period, pretend they didn't die
ageofdeath = subdata$b7
ageofdeath[is.na(ageofdeath)] = -1
cage = subdata$cage
lived = is.na(subdata$b7) | (ageofdeath > subdata$cage)
# calculate number of trials in binomial by child, age group, and household
getAgeGroup = function(age) {
if(age == 0)
return(1)
else if(age < 12)
return(2)
else if(age < 24)
return(3)
else if(age < 36)
return(4)
else if(age < 48)
return(5)
else if(age < 60)
return(6)
else
return(-1)
}
getAgeGroups = function(ages) {
sapply(ages, getAgeGroup)
}
getTrialsPerAgeGroup = function(tabRow) {
thisCage = tabRow$cage
c(1,
(thisCage >= 12)*11 + (thisCage < 12)*thisCage*(thisCage > 0),
(thisCage >= 24)*11 + (thisCage < 24)*(thisCage-11)*(thisCage > 11),
(thisCage >= 36)*11 + (thisCage < 36)*(thisCage-23)*(thisCage > 23),
(thisCage >= 48)*11 + (thisCage < 48)*(thisCage-35)*(thisCage > 35),
(thisCage >= 60)*11 + (thisCage < 60)*(thisCage-47)*(thisCage > 47))
}
trials = (!lived) * (ageofdeath + 1) + lived * cage # Number of trials for each row of subdata in binomial
subdata$trial
# get the number of birth by cluster
n <- table(subdata[,'v001'])
clusterid <- dimnames(n)[[1]]
n.data = data.frame(n=as.vector(n), clusterid=clusterid)
# remove births which are alive or where there is no information on age at death
noinfo = is.na(subdata[,'b7'])
cat("We have information that", sum(!noinfo)/nrow(subdata)*100, "% of the children died")
subdata <- subdata[!noinfo,]
# remove kids that died at an age older than 5 years
older5 <- subdata[,'b7'] > 60
cat(sum(older5)/nrow(subdata)*100, "% of the kids who died, died with an age older than 5 years")
subdata <- subdata[!older5,]
# get number of death below 5 by cluster/village
y <- table(subdata[,'v001'])
clusterid <- dimnames(y)[[1]]
y.data = data.frame(y=as.vector(y), clusterid=clusterid)
# generate one dataset
my.data <- merge(y.data, n.data, by='clusterid', all=TRUE, sort=TRUE)
my.data <- merge(my.data, clStrat, by='clusterid', all=TRUE, sort=TRUE)
# Set NAs in y to zero
my.data$y[is.na(my.data$y)] = 0
# Read geographical information
library(rgdal)
spObj = readOGR(dsn = "Kenya2014gps/", layer = "KEGE71FL")
# Extract (lon, lat) coordinates of all clusters
geoObj = data.frame(cId = spObj$DHSCLUST, lon = spObj$LONGNUM, lat = spObj$LATNUM)
# Extract coordinates of clusters with data
idx = match(my.data$clusterid, geoObj$cId)
my.data$lon = geoObj$lon[idx]
my.data$lat = geoObj$lat[idx]
# Missing geographical information is assigned value (0,0)
# Remove these
missIdx = which(my.data$lon == 0)
my.data = my.data[-missIdx,]
mort = my.data
newNames = names(mort)
newNames[1] = "clusterID"
newNames[6] = "urban"
mort[,6] = mort[,6] == 1
names(mort)=newNames
# save(file = "kenyaData.RData", mort) # don't save until we've added admin1 data from gps dataset
# (kends00ag.asc, admToCounty.txt)
# Read population density map
# popMap = as.matrix(read.table(file = "KenyaPopDens/kends00ag.asc", skip = 6, na.strings = "-9999"))
# lonMap = matrix(rep(33 + (0:239)*0.0416667, each = 288), ncol = 240)
# latMap = matrix(rep(5.9583 - (0:287)*0.0416667, 240), ncol = 240)
# image.plot(lonMap, latMap, popMap, asp = 1)
# pop.data = list(dens = popMap, lonG = lonMap, latG = latMap)
# save(file = "Data/kenyaPop.RData", pop.data)
# Administrative region to county
# admToCounty = read.table('Data/admToCounty.txt', header = TRUE)
# save(file = "Data/kenyaRegionCounty.RData", admToCounty)
# v001 is supposedly cluster number, while v002 is supposedly houshold/dwelling number
# (there can be multiple dwellings per household). Household numbers restart for each
# cluster.
length(unique(subdata[,'v001']))
# 1593
length(unique(subdata[,'v002']))
# 171
# why are there fewer births after 2008? (for the original subdata, not the modified one)
hist(subdata[,'b2'], xlab="Birth year", freq=F, main="Histogram of birth year",
breaks=seq(1975.5, 2014.5, by=1))
abline(v=2008, col="blue")
# for each unique cluster, calculate the number of unique households/dwellings in it, and
# make a histogram. Why isn't it always exactly 25? Should this be used in the sample
# weights instead of 1/25?
test = data.frame(data[,c('b2', 'b5', 'b7', 'v024', 'v025', 'v001', 'v002')])
getNumHHolds = function(v002s) {length(unique(v002s))}
nHHolds = aggregate(test$v002, data.frame(list(v001=test$v001)), getNumHHolds)
head(nHHolds)
hist(nHHolds[,2], xlab="Households sampled per cluster", freq=F, main="Households sampled per cluster")
getNumHHolds = function(v002s) {max(v002s)}
nHHolds = aggregate(test$v002, data.frame(list(v001=test$v001)), getNumHHolds)
head(nHHolds)
hist(nHHolds[,2], xlab="Approximate households", freq=F, main="Approximate households per cluster",
breaks=100, col="skyblue")
getNumHHolds = function(v002s) {max(v002s)}
nHHolds = aggregate(data$v002, data.frame(list(v001=data$v001)), getNumHHolds)
head(nHHolds)
hist(nHHolds[,2], xlab="Max Household ID", main="2014 Kenya DHS\nMax Household ID Per Cluster",
breaks=100, col="skyblue")
# plot data spatially
quilt.plot(my.data$lon, my.data$lat, my.data$y/my.data$n, xlim=c(33.75, 42.1),
ylim=c(-4.9, 5.5), main="Kenya 2003-2008 U5MR")
world(add=TRUE)
###############################################################################################
###############################################################################################
###############################################################################################
###############################################################################################
###############################################################################################
# now read gps data
library(SUMMER)
library(foreign)
# gpsDat = read_shape("Kenya2014gps/KEGE71FL.shp")
# out = readShapePoly("Kenya2014gps/KEGE71FL.shp", delete_null_obj=TRUE, force_ring=TRUE, repair=TRUE)
# out = readShapePoly("allDat/KEGE71FL.shp", delete_null_obj=TRUE, force_ring=TRUE)
gpsDat = readShapePoints("Kenya2014gps/KEGE71FL.shp")
# tmp = readShapeLines("Kenya2014gps/KEGE71FL.shp")
plot(gpsDat)
world(add=TRUE)
names(attributes(gpsDat))
coords = attr(gpsDat, "coords")
plot(coords)
world(add=TRUE)
test = coords[,1] < 20 # these are the observations whose source is missing. remove these
sum(test)
gpsDat[test,]
# remove bad observations
gpsDat=gpsDat[!test,]
plot(gpsDat)
world(add=TRUE)
dim(gpsDat)
names(gpsDat)=c("ID","countryID", "year", "clustID", "countryIDFIPS", "countryIDAdminID",
"admin1FIPS","admin1IDSALB",
"admin1SALB", "admin1ID", "admin1", "regionID", "region",
"source", "urban", "lat", "lon", "altGPS", "altRadar", "coordRef")
gpsDat$altGPS[gpsDat$altGPS == 9999] = NA
gpsDat$altGPS[gpsDat$altRadar == 9999] = NA
gpsDat$urban = gpsDat$urban == "U"
gpsDat$countryIDFIPS[gpsDat$countryIDFIPS == "NULL"] = NA
gpsDat$admin1FIPS[gpsDat$admin1FIPS == "NULL"] = NA
gpsDat$admin1IDSALB[gpsDat$admin1IDSALB == "NULL"] = NA
gpsDat$admin1SALB[gpsDat$admin1SALB == "NULL"] = NA
gpsDat$countryIDAdminID[gpsDat$countryIDAdminID == "NULL"] = NA
head(gpsDat)
save(gpsDat, file="gpsDat.RData")
# get region and admin data from gps data, add to clusters in mort dataset
gpsI = match(data.frame(rbind(mort$lon, mort$lat)), data.frame(rbind(gpsDat$lon, gpsDat$lat)))
mortAdmin1 = gpsDat$admin1[gpsI]
mort$admin1 = mortAdmin1
mortReg = gpsDat$region[gpsI]
mort$region = mortReg
save(mort, file="kenyaData.RData")
# load in the world population density data
# library(tiff)
library(raster)
# pop = readTIFF("Kenya2014Pop/worldpop_total_1y_2014_00_00.tif", convert= TRUE)
pop = raster("Kenya2014Pop/worldpop_total_1y_2014_00_00.tif", values= TRUE)
plot(pop)
names(attributes(pop))
lonRange=c(-180, 180)
latRange=c(-90,90)
kenyaLonRange = c(33.5, 42)
kenyaLatRange = c(-5,5.5)
kenyaLonLength = kenyaLonRange[2] - kenyaLonRange[1]
kenyaLatLength = kenyaLatRange[2] - kenyaLatRange[1]
kenyaExtent = extent(c(xmin=kenyaLonRange[1], xmax=kenyaLonRange[2],
ymin=kenyaLatRange[1], ymax=kenyaLatRange[2]))
numEAs = 96251
# Number of rows and columns at the original resolution
# > range(rI)
# [1] 805 1008
# > range(cI)
# [1] 4082 4560
totalRows = 4320 # latitude
totalCols = 8640 # longitude
origLonRes = 0.04166667 # 24/degree
origLatRes = 0.04166667
resPerDeg = 24
extentCols = round(kenyaLonLength*resPerDeg)
extentRows = round(kenyaLatLength*resPerDeg)
increaseFac = 1
lonsInterp = seq(kenyaLonRange[1], kenyaLonRange[2], l=round(extentCols*increaseFac))
latsInterp = seq(kenyaLatRange[1], kenyaLatRange[2], l=round(extentRows*increaseFac))
locsInterp = make.surface.grid(list(x=lonsInterp, y=latsInterp))
# test = extract(pop, kenyaExtent)
kenyaPopVals = extract(pop, SpatialPoints(locsInterp),method="bilinear") # this may take quite a while
lonRes = lonsInterp[2] - lonsInterp[1]
latRes = latsInterp[2] - latsInterp[1]
sum(!is.na(kenyaPop))
kenyaPop = data.frame(list(lon=locsInterp[,1], lat=locsInterp[,2], pop=kenyaPopVals))
# read in administrative map areas
# https://stackoverflow.com/questions/17723822/administrative-regions-map-of-a-country-with-ggmap-and-ggplot2
library(ggplot2)
library(rgdal)
library(sp)
# out = load("mapData/KEN_adm1.rds")
# pakistan.adm2.spdf <- get("gadm")
adm1 = readRDS("mapData/KEN_adm1.rds")
plot(adm1)
adm0 = readRDS("mapData/KEN_adm0.rds")
plot(adm0)
names(adm0)
# subset population density to be within Kenya
polys = adm0@polygons
kenyaPoly = polys[[1]]@Polygons[[77]]@coords
plot(kenyaPoly, type="l")
inKenya = in.poly(cbind(kenyaPop$lon, kenyaPop$lat), kenyaPoly) # takes a very long time
kenyaPop = kenyaPop[inKenya,]
dim(kenyaPop) # make sure we have enough points
# [1] >98628 3 for increaseFac=1.9
# [1] 985983 3 for increaseFac=6 (we need a sqrt(10) x increase to get enough points in Nairobi)
# [1] 10966143 3 for increaseFac=20
# renormalize Kenya population
totalKenyaPop = 43.0 * 10^6 # in 2014 from DHS documents
decreaseFac = totalKenyaPop/sum(kenyaPop$pop) # instead of rescaling population using resolution, rescale population exactly for same total
kenyaPop$popOrig = kenyaPop$pop
kenyaPop$pop = kenyaPop$popOrig*decreaseFac
kenyaArea = 224081 # in miles^2
cellArea = kenyaArea/nrow(kenyaPop)
kenyaPop$popDens = kenyaPop$pop/cellArea # density in people/mi^2
# add county and region data
countyDat = getRegion(cbind(kenyaPop$lon, kenyaPop$lat), adm1) # takes a few minutes
# sum(is.na(countyDat$regionNames)) # test to make sure every grid cell has exactly 1 associated county
kenyaPop$admin1 = countyDat$regionNames
# kenyaPop$admin1MultAdmins = countyDat$multipleRegs # this is 0 when increaseFac=1
regions = countyToRegion(kenyaPop$admin1)
kenyaPop$region = regions
save(kenyaPop, file="kenyaPop.RData")
varRange = range(kenyaPop$pop[kenyaPop$pop!= 0])
cols = tim.colors()
# ticks = axisTicks(varRange, log=TRUE)
ticks=c(10^seq(-4, 4, by=2))
plotVar = log10(kenyaPop$pop)
varRange=range(plotVar[kenyaPop$pop != 0])
kenyaEAs = simEAs(kenyaPop)
png("figures/EAsAndPop.png", width=1000, height=600)
par(mfrow=c(1,2))
# set.panel(1,2)
par( oma=c( 0,0,0,5))
plot(kenyaEAs$lon, kenyaEAs$lat, pch=".", col="blue", main=TeX("Enumeration Areas"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
quilt.plot(kenyaPop[,1:2], kenyaPop$pop/cellArea, FUN = function(x) {x = x[x != 0]; log10(mean(x))},
nx=400, ny=400, add.legend=FALSE, main=TeX("Kenya Population Density (people/mi$^2$)"), ylim=kenyaLatRange,
xlim=kenyaLonRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
par( oma=c(0,0,0,2))
image.plot(zlim=varRange, nlevel=length(cols), legend.only=TRUE, horizontal=FALSE,
col=cols, add = TRUE, axis.args=list(at=log10(ticks), labels=ticks))
dev.off()
numClusters = 1593
clustersPerCounty = aggregate(rep(1, nrow(mort)), list(mort$admin1), sum)
clusters = kenyaEAs[sample(1:numEAs, numClusters, replace= FALSE),]
clusters2 = kenyaEAs[sampleByStratum(kenyaEAs$admin1, clustersPerCounty$x),]
png("figures/EAsPopClusters.png", width=1000, height=1000)
par(mfrow=c(2,2))
# set.panel(1,2) I
par( oma=c( 0,0,0,5))
plot(clusters2$lon, clusters2$lat, typ="n", main=TeX("Simulated Clusters (by County)"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
plotMapDat(adm1, lwd=.5)
points(clusters2$lon, clusters2$lat, pch=".", col="blue")
plot(mort$lon, mort$lat, type="n", main=TeX("True Clusters"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
plotMapDat(adm1, lwd=.5)
points(mort$lon, mort$lat, pch=".", col="blue")
plot(clusters$lon, clusters$lat, type="n", main=TeX("Simulated Clusters"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
plotMapDat(adm1, lwd=.5)
points(clusters$lon, clusters$lat, pch=".", col="blue")
plot(kenyaPop[,1:2], type="n", main=TeX("Kenya Population Density (people/mi$^2$)"), ylim=kenyaLatRange,
xlim=kenyaLonRange, xlab="Longitude", ylab="Latitude")
quilt.plot(kenyaPop[,1:2], kenyaPop$pop/cellArea, FUN = function(x) {x = x[x != 0]; log10(mean(x))},
nx=400, ny=400, add.legend=FALSE, add=TRUE)
plotMapDat(adm1, lwd=.5)
world(add=TRUE)
par( oma=c(0,0,0,2))
image.plot(zlim=varRange, nlevel=length(cols), legend.only=TRUE, horizontal=FALSE,
col=cols, add = TRUE, axis.args=list(at=log10(ticks), labels=ticks))
dev.off()
### determine the threshold for urban/rural
## first get population density at cluster locations
clusterPop = extract(pop, SpatialPoints(cbind(mort$lon, mort$lat)),method="bilinear")
range(clusterPop[ mort$urban])
range(clusterPop[ !mort$urban])
par(mfrow=c(1,2))
hist(clusterPop[ mort$urban], main="Urban population", breaks=30)
hist(clusterPop[ !mort$urban], main="Rural population", breaks=30)
par(mfrow=c(1,2))
par( oma=c( 0,0,0,5))
plot( mort$lon[ mort$urban], mort$lat[ mort$urban], pch=".",col="blue", ylim=kenyaLatRange,
xlim=kenyaLonRange, xlab="Longitude", ylab="Latitude")
points( mort$lon[ !mort$urban], mort$lat[ !mort$urban], pch=".",col="green")
world(add=TRUE)
quilt.plot(kenyaPop[,1:2], kenyaPop$pop/cellArea, FUN = function(x) {x = x[x != 0]; log10(mean(x))},
nx=400, ny=400, add.legend=FALSE, main=TeX("Kenya Population Density (people/mi$^2$)"), ylim=kenyaLatRange,
xlim=kenyaLonRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
par( oma=c(0,0,0,2))
image.plot(zlim=varRange, nlevel=length(cols), legend.only=TRUE, horizontal=FALSE,
col=cols, add = TRUE, axis.args=list(at=log10(ticks), labels=ticks))
par(mfrow=c(1,3))
clusterLog10Pop = log10(clusterPop)
doPred = (clusterPop != 0) & (clusterPop < 40000) & (clusterPop > 250)
modUrban = mort$urban[doPred]
modPop = log10(clusterPop[doPred])
modReg = mort$region[doPred]
modAd = mort$admin1[doPred]
mod = glm(modUrban ~ modPop, data=mort, family=binomial("probit"))
# summary( mod)
clustPopLog10s = seq(1, 6, l=500)
clustPops = 10^clustPopLog10s
probs = predict(mod, list(modPop=clustPopLog10s), type="response")
plot(clusterPop, mort$urban, pch="+", log="x", xlab="Population", ylab="Probability Urban",
main="Probability Urban")
lines(clustPops, probs, col="blue", lwd=2)
thetas = coef(mod)
popThresh = 10^(-thetas[1]/thetas[2]) # ~ 18583.71
abline(v=popThresh, col="green") # threshold: logit,probit,cauchit: 4.260,4.269,4.250
sum((modUrban - fitted(mod))^2) # cauchit works the best
sum((modUrban - round(fitted(mod)))^2) # 402 for all of them, or 372 including region, 279 including county
misclassified = (modUrban - round(fitted(mod))) != 0
par(mfrow=c(1,1))
plot( mort$lon[misclassified], mort$lat[misclassified], type="n", ylim=kenyaLatRange,
xlim=kenyaLonRange, xlab="Longitude", ylab="Latitude")
world(add=TRUE)
plotMapDat(adm1)
points( mort$lon[misclassified], mort$lat[misclassified], pch=".",col="red")
points( mort$lon[!misclassified], mort$lat[!misclassified], pch=".",col="green")
# numClusters = table(mort$admin1)
meanPop = aggregate(clusterPop, list(mort$admin1), mean)
numClusters = aggregate(rep(1, nrow(mort)), list(mort$admin1), sum)
par(mfrow=c(1,1))
pdf(file="figures/ClusterByCountyPop.pdf", width=5, height=5)
plot(meanPop$x, numClusters$x, log="x", col="blue", xlab="Mean Cluster Population", ylab="Number of Clusters",
main="Sampled Clusters per County")
dev.off()
# do the same but for all EAs
meanPopEA = aggregate(kenyaEAs$pop, list(kenyaEAs$admin1), mean)
numClustersEA = aggregate(rep(1, nrow(kenyaEAs)), list(kenyaEAs$admin1), sum)
par(mfrow=c(1,1))
pdf(file="figures/ClusterByCountyPop.pdf", width=5, height=5)
plot(meanPopEA$x, numClustersEA$x, log="x", col="blue", xlab="Mean Cluster Population", ylab="Number of Clusters",
main="Sampled Clusters per County")
dev.off()
# check predictions of the county specific threshold model
clusterLog10Pop = log10(clusterPop)
doPred = (clusterPop != 0) & (clusterPop < 40000) & (clusterPop > 250)
modUrban = mort$urban[doPred]
modPop = log10(clusterPop[doPred])
modReg = mort$region[doPred]
modAd = mort$admin1[doPred]
mod = glm(modUrban ~ modPop + modAd, data=mort, family=binomial("probit"))
preds = mort$urban
preds[doPred] = round(fitted(mod))
pdf(file="figures/clusterFittedUrban.pdf", width=10, height=5)
par(mfrow=c(1,2))
plot(mort$lon[preds == 1], mort$lat[preds == 1], pch=".", col="blue", main=TeX("Predicted urbanicity"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
points(mort$lon[preds != 1], mort$lat[preds != 1], pch=".", col="green")
world(add=TRUE)
plotMapDat(adm1)
plot(mort$lon[mort$urban], mort$lat[mort$urban], pch=".", col="blue", main=TeX("True urbanicity"), xlim=kenyaLonRange,
ylim=kenyaLatRange, xlab="Longitude", ylab="Latitude")
points(mort$lon[!mort$urban], mort$lat[!mort$urban], pch=".", col="green")
world(add=TRUE)
plotMapDat(adm1)
dev.off()
# check to see if any county has no urban predictions
aggregate(preds, by=list(mort$admin1), sum) # this is very bad:
# 1 Baringo 10
# 2 Bomet 0
# 3 Bungoma 4
# 4 Busia 5
# 5 Elgeyo Marakwet 2
# 6 Embu 11
# 7 Garissa 11
# 8 Homa Bay 6
# 9 Isiolo 11
# 10 Kajiado 19
# 11 Kakamega 4
# 12 Kericho 15
# 13 Kiambu 23
# 14 Kilifi 12
# 15 Kirinyaga 5
# 16 Kisii 5
# 17 Kisumu 14
# 18 Kitui 9
# 19 Kwale 10
# 20 Laikipia 10
# 21 Lamu 14
# 22 Machakos 20
# 23 Makueni 4
# 24 Mandera 10
# 25 Marsabit 10
# 26 Meru 6
# 27 Migori 12
# 28 Mombasa 36
# 29 Murang'a 1
# 30 Nairobi 56
# 31 Nakuru 20
# 32 Nandi 3
# 33 Narok 5
# 34 Nyamira 0
# 35 Nyandarua 7
# 36 Nyeri 11
# 37 Samburu 9
# 38 Siaya 2
# 39 Taita Taveta 12
# 40 Tana River 10
# 41 Tharaka-Nithi 11
# 42 Trans-Nzoia 8
# 43 Turkana 9
# 44 Uasin Gishu 16
# 45 Vihiga 4
# 46 Wajir 11
# 47 West Pokot 8
##### set number of EAs per county/region
easpc = read.csv("EAdata/tableEA.csv")
easpc$County = as.character(easpc$County)
for(i in 2:ncol(easpc)) {
easpc[,i] = as.numeric(gsub(",","",as.character(easpc[,i])))
}
# save the dataset
save(easpc, file="easpc.RData")
# compute region totals in each column of easpc
regs = countyToRegion(easpc$County)
getRegTot = function(colDat) {
aggregate(colDat, list(regs), sum)$x
}
easpr = data.frame(c(list(sort(unique(regs))), list(apply(easpc[,2:ncol(easpc)], 2, getRegTot))))
names(easpr)[1] = "Region"
save(easpr, file="easpr.RData")
##### do the same except with clusters
clustpc = read.csv("EAdata/tableClust.csv")
clustpc$County = as.character(clustpc$County)
clustpc = clustpc[1:47,] # delete the last row, which is blank (not sure why an extra row was included...)
for(i in 2:ncol(clustpc)) {
clustpc[,i] = as.numeric(gsub(",","",as.character(clustpc[,i])))
}
# save the dataset
save(clustpc, file="clustpc.RData")
# compute region totals in each column of clustpc
regs = countyToRegion(clustpc$County)
getRegTot = function(colDat) {
aggregate(colDat, list(regs), sum)$x
}
clustpr = data.frame(c(list(sort(unique(regs))), list(apply(clustpc[,2:ncol(clustpc)], 2, getRegTot))))
names(clustpr)[1] = "Region"
save(clustpr, file="clustpr.RData")
##### do the same except for population per county by urban/rural (in 2009. Inflate to have correct total population for 2014)
poppc = read.csv("EAdata/tablePop.csv")
poppc$County = as.character(poppc$County)
poppc = poppc[1:47,] # delete the last row, which is blank (not sure why an extra row was included...)
for(i in 2:4) {
poppc[,i] = as.numeric(gsub(",","",as.character(poppc[,i])))
}
increaseFac = totalKenyaPop/sum(poppc[,4])
poppc[,2:4] = round(increaseFac * poppc[,2:4])
# save the dataset
save(poppc, file="poppc.RData")
# get regional population data
regs = countyToRegion(poppc$County)
getRegTot = function(colDat) {
aggregate(colDat, list(regs), sum)$x
}
poppr = data.frame(c(list(sort(unique(regs))), list(apply(poppc[,2:4], 2, getRegTot))))
names(poppr)[1] = "Region"
poppr$pctTotal = poppr$popTotal/totalKenyaPop
poppr$pctUrb = poppr$popUrb/poppr$popTotal
save(poppr, file="poppr.RData")
## compute the neighbourhood structure as needed by INLA
spP <- SpatialPolygons(adm1@polygons, proj4string = adm1@proj4string)
neighb <- poly2nb(spP)
## save the neighbourhood graph
nb2INLA(file = 'Kenyaadm1.graph', neighb)
setwd(wd)