-
Notifications
You must be signed in to change notification settings - Fork 1
/
WineQualityPredicts.py
174 lines (126 loc) · 5.94 KB
/
WineQualityPredicts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from tkinter import *
import numpy as np
def showQuality():
new = np.array([[float(e1.get()),float(e2.get()),float(e3.get()),float(e4.get()),float(e5.get()),float(e6.get()),float(e7.get()),float(e8.get()),float(e9.get()),float(e10.get()),float(e11.get())]])
Ans = RF_clf.predict(new)
fin=str(Ans)[1:-1]#IT WILL remove[ ]
quality.insert(0, fin)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#Use Random Forest Classifier to train a prediction model
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, log_loss
from sklearn.metrics import confusion_matrix
def red_main():
# For this kernel, I amm only using the red wine dataset
data = pd.read_csv('winequality-red.csv')
data.head()
#Summary statistics
data.describe()
#All columns has the same number of data points
extra = data[data.duplicated()]
extra.shape
# Let's proceed to separate 'quality' as the target variable and the rest as features.
y = data.quality # set 'quality' as target
X = data.drop('quality', axis=1) # rest are features
print(y.shape, X.shape)
#Let's look at the correlation among the variables using Correlation chart
colormap = plt.cm.viridis
plt.figure(figsize=(12,12))
plt.title('Correlation of Features', y=1.05, size=15)
sns.heatmap(data.astype(float).corr(),linewidths=0.1,vmax=1.0, square=True,
linecolor='white', annot=True)
#Split data into training and test datasets
seed = 8 # set seed for reproducibility
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=seed)
#Train and evaluate the Random Forest Classifier with Cross Validation
# Instantiate the Random Forest Classifier
RF_clf = RandomForestClassifier(random_state=seed)
# Compute k-fold cross validation on training dataset and see mean accuracy score
cv_scores = cross_val_score(RF_clf,X_train, y_train, cv=10, scoring='accuracy')
#Perform predictions
RF_clf.fit(X_train, y_train)
pred_RF = RF_clf.predict(X_test)
def white_main():
data = pd.read_csv('winequality-white.csv')
data.head()
#Summary statistics
data.describe()
#All columns has the same number of data points
extra = data[data.duplicated()]
extra.shape
# Let's proceed to separate 'quality' as the target variable and the rest as features.
y = data.quality # set 'quality' as target
X = data.drop('quality', axis=1) # rest are features
print(y.shape, X.shape)
#Let's look at the correlation among the variables using Correlation chart
colormap = plt.cm.viridis
plt.figure(figsize=(12,12))
plt.title('Correlation of Features', y=1.05, size=15)
sns.heatmap(data.astype(float).corr(),linewidths=0.1,vmax=1.0, square=True,
linecolor='white', annot=True)
#Use Random Forest Classifier to train a prediction model
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, log_loss
from sklearn.metrics import confusion_matrix
#Split data into training and test datasets
seed = 8 # set seed for reproducibility
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=seed)
#Train and evaluate the Random Forest Classifier with Cross Validation
# Instantiate the Random Forest Classifier
RF_clf = RandomForestClassifier(random_state=seed)
# Compute k-fold cross validation on training dataset and see mean accuracy score
cv_scores = cross_val_score(RF_clf,X_train, y_train, cv=10, scoring='accuracy')
#Perform predictions
RF_clf.fit(X_train, y_train)
pred_RF = RF_clf.predict(X_test)
master = Tk()
Label(master, text="Fixed Acidity", anchor="nw", width=15).grid(row=0)
Label(master, text="Volatile Acidity", anchor="nw", width=15).grid(row=1)
Label(master, text="Citric Acid", anchor="nw", width=15).grid(row=2)
Label(master, text="Residual Sugar", anchor="nw", width=15).grid(row=3)
Label(master, text="Chlorides", anchor="nw", width=15).grid(row=4)
Label(master, text="Sulfur Dioxide", anchor="nw", width=15).grid(row=5)
Label(master, text="Total Sulfur Dioxide", anchor="nw", width=15).grid(row=6)
Label(master, text="Density", anchor="nw", width=15).grid(row=7)
Label(master, text="pH", anchor="nw", width=15).grid(row=8)
Label(master, text="Sulphates", anchor="nw", width=15).grid(row=9)
Label(master, text="Alcohol", anchor="nw", width=15).grid(row=10)
Label(master, text = "Quality", anchor="nw", width=15).grid(row=13)
e1 = Entry(master)
e2 = Entry(master)
e3 = Entry(master)
e4 = Entry(master)
e5 = Entry(master)
e6 = Entry(master)
e7 = Entry(master)
e8 = Entry(master)
e9 = Entry(master)
e10 = Entry(master)
e11 = Entry(master)
quality = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
e3.grid(row=2, column=1)
e4.grid(row=3, column=1)
e5.grid(row=4, column=1)
e6.grid(row=5, column=1)
e7.grid(row=6, column=1)
e8.grid(row=7, column=1)
e9.grid(row=8, column=1)
e10.grid(row=9, column=1)
e11.grid(row=10, column=1)
quality.grid(row=13, column=1)
rad1 = Radiobutton(master, text = 'Red Wine', value=1, command = red_main)
rad2 = Radiobutton(master, text = 'White Wine', value=2, command = white_main)
rad1.grid(column=0, row=0 ,sticky=W, pady=4)
rad2.grid(column=1, row=0, sticky=W, pady=4 )
Button(master, text='Quit', command=master.destroy,width=15).grid(row=11, column=0, sticky=W, pady=4)
Button(master, text='Find Quality', command=showQuality,width=17).grid(row=11, column=1, sticky=W, pady=4)
Button(master, text='Project By',width=15).grid(row=14, column=0, sticky=W, pady=4)
Button(master, text='Mayur S. Satav',width=17).grid(row=14, column=1, sticky=W, pady=4)
mainloop( )