forked from priba/nmp_qc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LogMetric.py
67 lines (51 loc) · 1.72 KB
/
LogMetric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
import os
from tensorboard_logger import configure, log_value
__author__ = "Pau Riba, Anjan Dutta"
__email__ = "priba@cvc.uab.cat, adutta@cvc.uab.cat"
def error_ratio(pred, target):
if type(pred) is not np.ndarray:
pred = np.array(pred)
if type(target) is not np.ndarray:
target = np.array(target)
return np.mean(np.divide(np.abs(pred - target), np.abs(target)))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
def __init__(self, log_dir):
if not os.path.isdir(log_dir):
# if the directory does not exist we create the directory
os.makedirs(log_dir)
else:
# clean previous logged data under the same directory name
self._remove(log_dir)
# configure the project
configure(log_dir)
self.global_step = 0
def log_value(self, name, value):
log_value(name, value, self.global_step)
return self
def step(self):
self.global_step += 1
@staticmethod
def _remove(path):
""" param <path> could either be relative or absolute. """
if os.path.isfile(path):
os.remove(path) # remove the file
elif os.path.isdir(path):
import shutil
shutil.rmtree(path) # remove dir and all contains