-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrategies.pyx
532 lines (400 loc) · 25.4 KB
/
strategies.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#cython: language_level=3
"""Collection of Strategy classes used by the Wordle-analyzing code.
Wordle is at https://www.powerlanguage.co.uk/wordle/.
This program comes with ABSOLUTELY NO WARRANTY. Use at your own risk. It is
copyright 2022 by Patrick Mooney. It is free software, and you are welcome to
redistribute it under certain conditions, according to the GNU general public
license, either version 3 or (at your own option) any later version. See the
file LICENSE.md for details.
"""
import collections
import numbers
import random
import string
import typing
import wordle_utils as wu
class Strategy:
"""An abstract strategy, specifying what parameters are necessary. All
Strategies MUST be subclasses of this class.
Strategies are "degenerate" classes -- mere packages of functions. They need not
even be instantiated to do their work: none of their methods takes a SELF
parameter! (All their methods are static or class methods.) They are mini-
modules that keep their related functions in bundles, nothing more. All that
instantiating them achieves is checking that all of a Strategy's abstract
methods have been filled in.
(Even that's not true any more! Moving to Cython has mandated that Strategy no
longer be a Python ABC with abstract methods, because that can't be combined
with static methods when compiling via Cython. So there is no benefit
whatsoever to instantiating a Strategy! It's just a package of functions that
benefits from inheritance to facilitate decomposition.)
"""
is_abstract = True # Can't use @abstractmethod or metaclass=abc.ABC when compiling with Cython and also using
# @classmethod. This must be manually and properly set on subclasses: if this is True, the
# Stategy is taken to be an abstract superclass, and it won't be tried.
@classmethod
def all_strategies(cls) -> typing.Generator[type, None, None]:
"""Returns a list of all known strategies.
"""
for t in cls.__subclasses__():
yield t
yield from t.all_strategies() #FIXME! Check to see whether this works?
@staticmethod
# @abc.abstractmethod
def rank(possible_words: typing.List[str]) -> typing.List[str]:
"""Given POSSIBLE_WORDS, rank them so that (what the strategy thinks is the)
most-likely word comes first, followed by the next-most-likely, etc.
"""
@staticmethod
# @abc.abstractmethod
def score(letter_frequencies: collections.Counter,
untried_letters: str,
w: str) -> typing.Type[numbers.Number]:
"""Assign a score to an individual guess. A guess that the Strategy thinks is
"better" should get a higher score. Strategies need not worry about how their
rankings compare to the rankings of other Strategies; that comparison is never
made.
"""
raise NotImplementedError
@classmethod
def solve(cls, answer: str) -> typing.Dict: #FIXME! More specific return type.
"""Given ANSWER, the answer to the Wordle in question, try to derive that answer by
starting from each possible starting word and applying the particular strategy,
tracking how successful it is in each instance, and returning a dictionary that
both summarizes the overall performance of the strategy and includes
move-by-move details about how each starting word played out.
"""
solutions = {w: cls.solve_from(answer, w) for w in wu.known_five_letter_words}
solutions = {k: v for k, v in solutions.items() if v} # Filter out any non-answers, as in ShadePointCurly-type strategies
ret = {
'solutions': solutions,
'number solved': len([i for i in solutions.values() if i[-1].Solved]),
}
if [i for i in solutions.values() if i[-1].Solved]:
ret.update({
'average moves': (sum([len(i) for i in solutions.values() if i[-1].Solved]) / len([i for i in solutions.values() if i[-1].Solved])),
'number of errors': len([i for i in solutions.values() if i[-1].ExhaustedErroneously])
})
return ret
@classmethod
def solve_from(cls, answer: str,
start_from: typing.Union[str, None],
moves_made: typing.Optional[typing.List[typing.Dict]] = None,
discovered_but_unknown_pos: typing.Optional[str] = None,
constraints: typing.Optional[typing.Dict[int, str]] = None,
) -> typing.Union[None, typing.Tuple[wu.SolutionData]]:
"""Given ANSWER, the answer to the Wordle, derive it from START_FROM using the
current Strategy, tracking moves made and how that changes the parameters of
what answers are remaining.
START_FROM may be None to force the inidividual Strategy to choose its own
starting move. This really only makes sense of the "starting move" is a "next
move" because a subclass has already made some choices and is delegating the
rest of the choices to a superclass. This happens, for instance, with
descendants of SpecifyInitialGuessesMixIn.
Subclasses may refuse to analyze for certain sets of parameters and return None
instead of returning an appropriate analysis dictionary.
"""
possibilities = constraints or {i: set(string.ascii_lowercase) for i in range(1, 6)}
ret, done = moves_made or list(), False
guess, unknown_pos = start_from, discovered_but_unknown_pos or ''
while not done:
if guess:
done, new_unknown_pos, new_possibilities = wu.evaluate_guess(guess, answer, possibilities, unknown_pos)
else:
new_unknown_pos, new_possibilities = unknown_pos, possibilities
untried_letters = ''.join([c for c in string.ascii_lowercase if c not in ''.join(i.Move for i in ret)])
letter_frequencies, remaining_possibilities = wu.enumerate_solutions(new_possibilities, new_unknown_pos)
possible_answers = {sol: cls.score(letter_frequencies, untried_letters, sol) for sol in remaining_possibilities}
possible_answers = dict(sorted(possible_answers.items(), key=lambda kv: kv[1], reverse=True))
if guess:
if len(ret) > 5:
done = True
ret.append(wu.SolutionData(Move=guess,
InitialPossibleLetters=tuple((key, value) for key, value in possibilities.items()),
KnownLettersWithUnknownPositionBeforeGuess=unknown_pos,
PossibleLettersAfterGuess=tuple((key, value) for key, value in new_possibilities.items()),
KnownLettersWithUnknownPositionAfterGuess=new_unknown_pos,
RemainingPossibilities=len(possible_answers),
ExhaustedErroneously=any([not len(v) for v in possibilities.values()]),
Solved=done))
if not done:
guess = list(possible_answers.keys())[0]
possibilities, unknown_pos = new_possibilities, new_unknown_pos
return tuple(ret)
class GetMaximumInfoHardMode(Strategy):
"""A Strategy that effectively "plays in hard mode," i.e. chooses a guess on every
round that COULD, based on all revealed information so far, be the answer. Of
those remaining possibilities, the ones that receive the highest score are those
that pick the largest number of letters that are frequently used among the
remaining possibilities that haven't yet been tried.
"""
is_abstract = False
@staticmethod
def score(letter_frequencies: collections.Counter,
untried_letters: str,
w: str) -> int:
return wu.untried_word_score(letter_frequencies, untried_letters, w)
class RandomChoiceOnEachTurn(Strategy):
"""A Strategy that scores each possibility entirely randomly. It does not PICK
A RANDOM WORD, nor even PICK A RANDOM WORDLE WORD; it limits itself to words
that haven't been eliminated already by the information given. It just scores
each of them randomly.
"""
is_abstract = False
@staticmethod
def score(letter_frequencies: collections.Counter,
untried_letters: str,
w: str) -> typing.Type[numbers.Number]:
return random.random()
class SpecifyInitialGuessesMixIn(Strategy):
"""A Strategy that tries a specific series of initial guesses before falling back
on its (other) parent Strategy from there. The set of initial tries is specified
as the class attribute _INITIAL_TRIES, which needs to be overridden in a
subclass. If it isn't, the derived Strategy just immediately falls back on its other
superclass.
This is a mix-in class, and needs to by specified first in the superclass list.
"""
is_abstract = True
_initial_tries = ()
@classmethod
def _delegation_class(cls) -> type:
"""Examine the superclass list and get the first class other than this one from
the list of superclasses, and return that class.
Can be overridden by subclasses to choose a different class to delegate to.
"""
assert len(cls.__bases__) > 1 # This is a mix-in class only!
assert (cls.__bases__[0] == SpecifyInitialGuessesMixIn) or issubclass(cls.__bases__[0], SpecifyInitialGuessesMixIn)
for c in cls.__bases__: # This would fail if we were going all the way up the __mro__, but we're not.
assert issubclass(c, Strategy)
assert len([c for c in cls.__bases__ if (not issubclass(c, SpecifyInitialGuessesMixIn) and (not c == SpecifyInitialGuessesMixIn))]) > 0
return [c for c in cls.__bases__ if (not issubclass(c, SpecifyInitialGuessesMixIn) and (not c == SpecifyInitialGuessesMixIn))][0]
@classmethod
def _abort_early(cls, moves: typing.List[dict],
known_letters_with_unknown_pos: str,
possibilities: typing.Iterable[str],
) -> bool:
"""Decide whether to abort before all initial guesses have been tried, even if
a solution hasn't been found. By default, in this class, this never ever
happens; but this can be changed by subclassing.
"""
return False
@classmethod
def solve_from(cls, answer: str,
start_from: typing.Union[str, None],
moves_made: typing.Optional[typing.List[typing.Dict]] = None,
discovered_but_unknown_pos: typing.Optional[str] = None,
constraints: typing.Optional[typing.Dict[int, str]] = None,
) -> typing.Union[None, typing.Tuple[wu.SolutionData]]:
"""Given ANSWER, the answer to the Wordle, derive it from START_FROM using the
current Strategy, tracking moves made and how that changes the parameters of
what answers are remaining.
START_FROM should not be None, but the possibility needs to be written into the
meathod header because Cython requires that descendant classes have the same
method headers as the headers for the methods they're overriding.
If __INITIAL_GUESSES are specified (by subclassing) and START_FROM is not
the correct starting word, returns None instead of analyzing.
"""
assert start_from is not None
if cls._initial_tries and (cls._initial_tries[0] != start_from):
return None
possibilities = constraints or {i: set(string.ascii_lowercase) for i in range(1, 6)}
ret, done = moves_made or list(), False
guesses = list(cls._initial_tries)
guess, unknown_pos = start_from, discovered_but_unknown_pos or ''
while guesses and not done:
guess = guesses.pop(0)
if not guesses:
return tuple(cls._delegation_class().solve_from(answer, guess, ret, unknown_pos))
done, new_unknown_pos, new_possibilities = wu.evaluate_guess(guess, answer, possibilities, unknown_pos)
untried_letters = ''.join([c for c in string.ascii_lowercase if c not in ''.join(i.Move for i in ret)])
letter_frequencies, remaining_possibilities = wu.enumerate_solutions(new_possibilities, new_unknown_pos)
possible_answers = {sol: cls.score(letter_frequencies, untried_letters, sol) for sol in remaining_possibilities}
possible_answers = dict(sorted(possible_answers.items(), key=lambda kv: kv[1], reverse=True))
if len(ret) > 5:
done = True
ret.append(wu.SolutionData(Move=guess,
InitialPossibleLetters=tuple((key, value) for key, value in possibilities.items()),
KnownLettersWithUnknownPositionBeforeGuess=unknown_pos,
PossibleLettersAfterGuess=tuple((key, value) for key, value in new_possibilities.items()),
KnownLettersWithUnknownPositionAfterGuess=new_unknown_pos,
RemainingPossibilities=len(possible_answers),
ExhaustedErroneously=any([not len(v) for v in possibilities.values()]),
Solved=done))
if not done:
possibilities, unknown_pos = new_possibilities, new_unknown_pos
if (len(ret) < len(cls._initial_tries)) and cls._abort_early(ret, unknown_pos, remaining_possibilities):
# Wait a minute: what should we do when this happens?
# Answer: restructure code above to guess earlier, once we have a Strategy that requires it.
return tuple(cls._delegation_class().solve_from(answer, None, ret, unknown_pos, possibilities))
class ShadePointCurlyMixIn(SpecifyInitialGuessesMixIn):
"""A Strategy based on the "optimized strategy" of Javier Frias, in "Forget Luck:
Optimized Wordle Strategy using BigQuery" (hereafter FLOWS). This is not an
exact implementation of the Strategy, which requires human judgment to be
applied; it just mechanically tries the three words he recommends sequentially
(unless one of the first two is a winner), then falls back on its (other) parent
Strategy from there.
This is a mix-in class, and needs to by specified first in the superclass list.
FLOWS is available on the web at:
https://betterprogramming.pub/forget-luck-optimized-wordle-strategy-using-bigquery-c676771e316f
"""
is_abstract = True
_initial_tries = ('shade', 'point', 'curly')
class ShadePointCurlyThenGetMaximumInfoHardMode(ShadePointCurlyMixIn, GetMaximumInfoHardMode):
"""Uses the SHADE, POINT, CURLY trio first, then falls back on using
GetMaximumInfoHardMode for the rest of its guesses. This is not quite what Frias
suggests, but it's not all that far off, either.
"""
is_abstract = False
class BailEarlyByPercentageReductionMixIn(SpecifyInitialGuessesMixIn):
"""A mix-in Strategy to be used in combination with subclasses of
SpecifyInitialGuessesMixIn. It bails early on using the initial guesses if the
number of remaining possibilities is sufficiently reduced to make it worthwhile
to just move along to the other parent strategy. "Sufficiently" is specified as
a percentage reduction relative to the number of total possibilities that each
strategy begins with. Without this, a SpecifyInitialGuessesMixIn descendant will
mechanically go through all of its initial guesses, stopping only if one of
those guesses happens to be the answer.
"""
is_abstract = True
reduction_needed_to_abort = None
@classmethod
def _abort_early(cls, moves: typing.List[dict],
known_letters_with_unknown_pos: str,
possibilities: typing.Iterable[str], # FIXME: More specific annotation
) -> bool:
assert cls.reduction_needed_to_abort is not None, f"ERROR! Strategy {cls.__name__} does not specify the amount of space reduction needed to abort trying a specified list of initial guesses early!"
assert 0 <= cls.reduction_needed_to_abort <= 1, f"ERROR! Strategy {cls.__name__} has a reduction_needed_to_bort value that is not between zero and 1!"
return (len(possibilities) < ((1.0 - cls.reduction_needed_to_abort) * len(wu.known_five_letter_words)))
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly01(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .01
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly02(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .02
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly03(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .03
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly04(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .04
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly05(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .05
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly06(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .06
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly07(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .07
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly08(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .08
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly09(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .09
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly10(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .10
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly15(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .15
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly20(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .20
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly25(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .25
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly30(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .30
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly35(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .35
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly40(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .40
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly45(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .45
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly50(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .50
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly55(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .55
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly60(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .60
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly65(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .65
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly70(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .70
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly75(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .75
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly80(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .80
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly85(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .85
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly90(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .90
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly91(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .91
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly92(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .92
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly93(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .93
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly94(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .94
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly95(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .95
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly96(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .96
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly97(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .97
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly98(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .98
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly99(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .99
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly991(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .991
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly992(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .992
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly993(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .993
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly994(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .994
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly995(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .995
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly996(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .996
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly997(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .997
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly998(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .998
class ShadePointCurlyThenGetMaximumInfoHardModeAndBailEarly999(BailEarlyByPercentageReductionMixIn, ShadePointCurlyMixIn, GetMaximumInfoHardMode):
is_abstract = False
reduction_needed_to_abort = .999