forked from cvjena/knfst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_oneClassNovelty_knfst_artificialClass.m
36 lines (32 loc) · 1.46 KB
/
learn_oneClassNovelty_knfst_artificialClass.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
% Learning method for one-class classification with KNFST according to the work:
%
% Paul Bodesheim and Alexander Freytag and Erik Rodner and Michael Kemmler and Joachim Denzler:
% "Kernel Null Space Methods for Novelty Detection".
% Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
%
% Please cite that paper if you are using this code!
%
%
% function model = learn_oneClassNovelty_knfst_artificialClass(K_artificial)
%
% calculates one-class KNFST model by separating target data from minus data
%
% INPUT:
% K_artificial -- (2n x 2n) kernel matrix of pairwise similarities between n training samples X and their negative replicates -X !!
% this function assumes that the first n rows/columns of K_artificial correspond to the true samples and
% the last n rows/columns of K_artificial to the negative replicates
%
% OUTPUT:
% model -- the one-class KNFST model used in test_oneClassNovelty_knfst_artificialClass
%
% (LGPL) copyright by Paul Bodesheim and Alexander Freytag and Erik Rodner and Michael Kemmler and Joachim Denzler
%
function model = learn_oneClassNovelty_knfst_artificialClass(K_artificial)
% get number of training samples
n = size(K_artificial,1)/2;
% create binary labels
labels = [ ones(n,1); -ones(n,1) ];
% get model parameters
model.proj = calculateKNFST(K_artificial,labels);
model.targetValue = mean(K_artificial(labels==1,:)*model.proj);
end