forked from NU-CUCIS/CheMixNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ml_util.py
466 lines (366 loc) · 14.5 KB
/
ml_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import pandas as pd
import numpy as np
import pickle
import random
import json
import platform
if platform.system() == 'Linux':
etc = "/home/apx748/bin/etc"
else:#It is Mac/Darwin
etc = "/etc"
from math import sqrt, floor, log10
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn.cluster import KMeans
import seaborn as sns
import matplotlib.font_manager
# from kmodes import kmodes
# from kmodes.kmodes import KModes
from scipy.spatial.distance import cdist, pdist
from numpy import mean
from sklearn.metrics import silhouette_score, r2_score
from sklearn.utils import shuffle
from sklearn.metrics import mean_absolute_error as mae
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import auc as roc_auc
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import cross_val_predict, \
ParameterGrid, cross_val_score, train_test_split
from paulRegressor import *
HEAD, TAIL = 5, -5
def send_email(subject ="test email", body="testing"):
import smtplib
if platform.python_version().split(".")[0] == "2":
import ConfigParser
config = ConfigParser.ConfigParser()
from email.MIMEMultipart import MIMEMultipart
from email.MIMEText import MIMEText
else:
import configparser
config = configparser.ConfigParser()
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
sender_config_file = os.path.join(etc, "email_config.txt")
config.read(sender_config_file)
SENDER_EMAIL_ID = config.get("configuration","email")
receiver_config_file = os.path.join(etc, "recipient_config.txt")
config.read(receiver_config_file)
RECEIVER_EMAIL_ID = config.get("configuration","email")
passwd_config_file = os.path.join(etc, "passwd_config.txt")
config.read(passwd_config_file)
PASSWD = config.get("configuration","password")
msg = MIMEMultipart()
msg['From'] = SENDER_EMAIL_ID
msg['To'] = RECEIVER_EMAIL_ID
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(SENDER_EMAIL_ID, PASSWD)
text = msg.as_string()
server.sendmail( SENDER_EMAIL_ID, RECEIVER_EMAIL_ID, text)
server.quit()
print("Email sent")
def in_jupyter():
try:
cfg = get_ipython().config
return True
except NameError:
return False
def round_sig(x, sig=3):
try:
return round(x, sig-int(floor(log10(abs(x))))-1)
except:
return x
def str_round(x, sig=3):
return str(round_sig(x,sig))
def mean_absolute_percentage_error(y_true, y_pred):
y_true = check_arrays(y_true)
y_pred = check_arrays(y_pred)
return mean(abs((y_true - y_pred) / y_true)) * 100
def mape(y_true,y_pred):
return mean_absolute_percentage_error(y_true,y_pred)
def r_score(y_true,y_pred):
return sqrt(r2_score(y_true,y_pred))
def R_score(y_true,y_pred):
return round_sig(sqrt(r2_score(y_true,y_pred)))
def R2_score(y_true,y_pred):
return round_sig(r2_score(y_true,y_pred))
def Mae(y_true,y_pred):
return round_sig(Mae(y_true,y_pred))
def Mse(y_true,y_pred):
return round_sig(mse(y_true,y_pred))
def Mape(y_true,y_pred):
return round_sig(mape(y_true,y_pred))
def crossVal_r2(X,y,estimator,CV=10):
predicted = cross_val_predict(estimator, X, y, cv=CV)
return r2_score(y, predicted)
def crossVal_scores(X,y,estimator,CV=10):
predicted = cross_val_predict(estimator, X, y, cv=CV)
return r2_score(y, predicted), mape(y,predicted)
def runGrid(algorithm,fpType,label, cv=10, maximum=0.5):
estimator = getEstimator(algorithm)
import platform
if platform.python_version()[0]=='2':
params, moreParams = loadJson('params'), loadJson('moreParams')
else:
params, moreParams = loadData('params'), loadData('moreParams')
count = 0
if 'extraTrees' in algorithm or 'randomForest' in algorithm:
parameters = moreParams[algorithm]
else:
parameters = params[algorithm]
for g in ParameterGrid(parameters):
count += 1
estimator.set_params(**g)
r2,mape = crossVal_scores(fpType,label,estimator,cv)
if r2>maximum:
print(estimator)
print("r2:",r2,"mape:",mape)
maximum = r2
best = estimator
return best
def loadData(name,path='pickles'):
'''
This loads a pickle file and returns the content which is a DICTIONARY object in our case.
'''
if ".pkl" in name:
name = name.split(".pkl")[0]
if "/" in name:
name = name.split("/",1)[1]
with open(path+"/"+name + '.pkl', 'rb') as f:
return pickle.load(f)
def saveData(obj, name,path='pickles'):
'''
This saves a object into a pickle file. In our case, it is generally a DICTIONARY object.
'''
with open(path+"/"+name + '.pkl', 'wb') as f:
pickle.dump(obj, f)
def loadNumpy(name,path='data'):
if ".npy" in name:
fullPath = path+'/'+name
else:
fullPath = path+'/'+name+'.npy'
return np.load(fullPath)
def saveNumpy(obj, name, path='data'):
if ".npy" not in name:
fullPath = path+'/'+name
np.save(fullPath, obj)
print(name,'saved successfully in',path)
else:
fullPath = path+'/'+name.split(".npy")[0]
np.save(fullPath, obj)
print(name,'saved successfully in',path)
def loadJson(name,path='data'):
if ".json" in name:
fullPath = path+'/'+name
else:
fullPath = path+'/'+name+'.json'
return json.load(open(fullPath))
def saveJson(obj, name, path='data'):
if '.json' not in name:
name = name + '.json'
fullPath = path+'/'+name
f = open(fullPath,"w")
f.write(json.dumps(obj))
f.close()
print(name,'saved successfully in',path)
def binTrainTest_80_20_Split(size,save=False):
N = int(size/5)
testIndices,trainIndices = [],[]
index = 0
for i in range(N):#240 for 1203
minIndex = (i*5)
if i ==N-1:#239
maxIndex = size-1
else:
maxIndex = (i*5)+4
index = random.randint(minIndex,maxIndex)
for j in range(minIndex,maxIndex+1):
if j==index:
testIndices += [j]
else:
trainIndices += [j]
if save:
saveNumpy(trainIndices,'trainIndices_'+str(size))
saveNumpy(testIndices,'testIndices_'+str(size))
return trainIndices, testIndices
def getEstimator(regressor):
if "lasso" in regressor or "Lasso" in regressor:
estimator = Lasso(alpha = 0.1)#RandomForestRegressor(random_state=0, n_estimators=100)\
elif "MultiLasso" in regressor:
estimator = MultiLasso()
elif "ridge" in regressor or "Ridge" in regressor:
estimator = Ridge()#(alphas=[0.1, 1.0, 10.0])
elif "SGDRegression" in regressor:
estimator = SGDRegressor()
elif "NNGarrotteRegression" in regressor:
estimator = NNGarrotteRegressor()
elif "KernelRegression" in regressor:
estimator = KernelRegressor()
elif "LinearRegression" in regressor:
estimator = LinearRegression()
elif "KNeighborsRegression" in regressor:
estimator = KNeighborsRegressor()
elif "randomForest" in regressor or "RandomForest" in regressor:
estimator = RandomForestRegressor()
elif "extraTrees" in regressor or "ExtraTrees" in regressor:
estimator = ExtraTreesRegressor()
elif "rbfSVM" in regressor or "RBFSVM" in regressor:
estimator = SVR(kernel="rbf")
elif "linearSVM" in regressor or "LinearSVM" in regressor:
estimator = SVR(kernel="linear")
elif "polySVM" in regressor or "PolySVM" in regressor:
estimator = polySVR()
elif "ElasticNet" in regressor:
estimator = ElasticNet()
elif "MultiElasticNet" in regressor:
estimator = MultiElasticNet()
elif "gradientBoost" in regressor or "GradientBoost" in regressor:
estimator = gradientBoost()
elif "AdaBoost" in regressor:
estimator = AdaBoostRegressor()
elif "Bagging" in regressor:
estimator = BaggingRegressor()
elif "DecisionTree" in regressor:
estimator = DecisionTreeRegressor()
elif "dummy" in regressor:
estimator = DummyRegressor()
return estimator
def cross_val_average(estimator,X,y,n_jobs=-1,cv=10):
return mean(cross_val_score(estimator=estimator,X=X,y=y,n_jobs=n_jobs,cv=cv))
def min_max_scale(data_1d):
return np.interp(data_1d, (data_1d.min(), data_1d.max()), (0, 1))
def silhouette(X):
range_n_clusters = [2, 3, 4, 5, 6,7,8]
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors)
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1],
marker='o', c="white", alpha=1, s=200)
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50)
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()
def BIC_Elbow_Kmeans(dt_trans,Max=9,Min=2):
K = range(Min,Max)
KM = [KMeans(n_clusters=k).fit(dt_trans) for k in K]
centroids = [k.cluster_centers_ for k in KM]
D_k = [cdist(dt_trans, cent, 'euclidean') for cent in centroids]
cIdx = [np.argmin(D,axis=1) for D in D_k]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/dt_trans.shape[0] for d in dist]
# Total with-in sum of square
wcss = [sum(d**2) for d in dist]
tss = sum(pdist(dt_trans)**2)/dt_trans.shape[0]
bss = tss-wcss
kIdx = 2
# elbow curve
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, avgWithinSS, 'b*-')
ax.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=12,
markeredgewidth=2, markeredgecolor='r', markerfacecolor='None')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster sum of squares')
plt.title('Elbow for KMeans clustering')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, bss/tss*100, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Percentage of variance explained')
plt.title('Elbow for KMeans clustering')
def silhouette_Elbow_Kmeans(dt_trans,Max=9,Min=2):
s = []
for n_clusters in range(Min,Max):
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(dt_trans)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
s.append(silhouette_score(dt_trans, labels, metric='euclidean'))
x = range(Min,Max)
plt.plot(x,s)
plt.ylabel("Silouette")
plt.xlabel("k")
plt.title("Silouette for K-means cell's behaviour")
sns.despine()
def plot_scatter(X, labels=None, centers=None, title="Scatter Plot"):
labels = np.zeros(shape=X.shape[0], dtype=int) if labels is None else labels
colors = ['b', 'r', 'g', 'm', 'y']
col_dict = {}
i = 0
for lab in np.unique(labels):
col_dict[lab] = colors[i]
i += 1
fig1 = plt.figure(1, figsize=(8,6))
ax = fig1.add_subplot(1, 1, 1)
for i in np.unique(labels):
indx = np.where(labels == i)[0]
plt.scatter(X[indx,0], X[indx,1], color=col_dict[i], marker='o', s=100, alpha=0.5)
if centers is not None:
plt.scatter(centers[:,0], centers[:,1], color='magenta', marker='*', s=250, alpha=0.5)
plt.setp(ax.get_xticklabels(), rotation='horizontal', fontsize=16)
plt.setp(ax.get_yticklabels(), rotation='vertical', fontsize=16)
plt.xlabel('$x_1$', size=20)
plt.ylabel('$x_2$', size=20)
plt.title(title, size=20)
plt.show()