-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.txt
26 lines (21 loc) · 1.45 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
The code provided implements W-Augment, alpha-trimmed Augment and Rand Augment and evaluates these methods on the UCR Archive dataset using the InceptionTime network described in section 4.3.1, https://arxiv.org/abs/2102.08310
Usage Summary
-------------
1) conda create --name <env> --file requirements.txt
2) Download UCR 2018 Archive data from http://www.timeseriesclassification.com/ and change Line 385 in the code to change the data path
3) python3 main.py --run_path <dest_dir> --augment w_augment
This will create a folder <dest_dir> with the output of the run which consists of two folders: UCR_results with the individual results for each model and the resulting ensemble on each dataset, and a summary_results folder which includes the summary metrics of the full run.
------------------------------------------------------------------------------
usage: main.py [-h] [--run_path RUN_PATH] [--n_epochs N_EPOCHS]
[--n_iters N_ITERS] [--datasets DATASETS]
[--augment {baseline,rand_augment,w_augment,atrim_augment}]
[--param_M PARAM_M]
optional arguments:
-h, --help show this help message and exit
--run_path RUN_PATH (default: ./)
--n_epochs N_EPOCHS (default: 1500)
--n_iters N_ITERS (default: 5)
--datasets DATASETS (default: all)
--augment {baseline,rand_augment,w_augment,atrim_augment}
(default: None)
--param_M PARAM_M (default: 10)