Skip to content

Commit d970944

Browse files
committed
Remove debugging statements which cause error (see v-sundaresan#9, v-sundaresan#10)
1 parent 9b35986 commit d970944

File tree

3 files changed

+28
-41
lines changed

3 files changed

+28
-41
lines changed

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
install_requires = [l.strip() for l in f.readlines()]
44

55
setup(name='truenet',
6-
version='1.0.0',
6+
version='1.0.1',
77
description='DL method for WMH segmentation',
88
author='Vaanathi Sundaresan',
99
install_requires=install_requires,

truenet/true_net/truenet_test_function.py

Lines changed: 24 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -32,10 +32,8 @@ def main(sub_name_dicts, eval_params, intermediate=False, model_dir=None,
3232
use_cpu = eval_params['Use_CPU']
3333
if use_cpu is True:
3434
device = torch.device("cpu")
35-
print('testfunction:device used:' + device)
3635
else:
3736
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
38-
print('testfunction:device used:' + device)
3937
nclass = eval_params['Nclass']
4038
num_channels = eval_params['Numchannels']
4139

@@ -82,72 +80,72 @@ def main(sub_name_dicts, eval_params, intermediate=False, model_dir=None,
8280
for sub in range(len(sub_name_dicts)):
8381
if verbose:
8482
print('Predicting output for subject ' + str(sub+1) + '...', flush=True)
85-
83+
8684
test_sub_dict = [sub_name_dicts[sub]]
8785
basename = test_sub_dict[0]['basename']
88-
86+
8987
probs_combined = []
9088
flair_path = test_sub_dict[0]['flair_path']
9189
flair_hdr = nib.load(flair_path).header
92-
probs_axial = truenet_evaluate.evaluate_truenet(test_sub_dict, model_axial, eval_params, device,
90+
probs_axial = truenet_evaluate.evaluate_truenet(test_sub_dict, model_axial, eval_params, device,
9391
mode='axial', verbose=verbose)
94-
probs_axial = truenet_data_postprocessing.resize_to_original_size(probs_axial, test_sub_dict,
92+
probs_axial = truenet_data_postprocessing.resize_to_original_size(probs_axial, test_sub_dict,
9593
plane='axial')
9694
probs_combined.append(probs_axial)
97-
95+
9896
if intermediate:
9997
save_path = os.path.join(output_dir,'Predicted_probmap_truenet_' + basename + '_axial.nii.gz')
10098
preds_axial = truenet_data_postprocessing.get_final_3dvolumes(probs_axial, test_sub_dict)
10199
if verbose:
102100
print('Saving the intermediate Axial prediction ...', flush=True)
103-
101+
104102
newhdr = flair_hdr.copy()
105103
newobj = nib.nifti1.Nifti1Image(preds_axial, None, header=newhdr)
106-
nib.save(newobj, save_path)
107-
108-
probs_sagittal = truenet_evaluate.evaluate_truenet(test_sub_dict, model_sagittal, eval_params, device,
104+
nib.save(newobj, save_path)
105+
106+
probs_sagittal = truenet_evaluate.evaluate_truenet(test_sub_dict, model_sagittal, eval_params, device,
109107
mode='sagittal', verbose=verbose)
110-
probs_sagittal = truenet_data_postprocessing.resize_to_original_size(probs_sagittal, test_sub_dict,
108+
probs_sagittal = truenet_data_postprocessing.resize_to_original_size(probs_sagittal, test_sub_dict,
111109
plane='sagittal')
112110
probs_combined.append(probs_sagittal)
113-
111+
114112
if intermediate:
115113
save_path = os.path.join(output_dir,'Predicted_probmap_truenet_' + basename + '_sagittal.nii.gz')
116114
preds_sagittal = truenet_data_postprocessing.get_final_3dvolumes(probs_sagittal, test_sub_dict)
117115
if verbose:
118116
print('Saving the intermediate Sagittal prediction ...', flush=True)
119-
117+
120118
newhdr = flair_hdr.copy()
121119
newobj = nib.nifti1.Nifti1Image(preds_sagittal, None, header=newhdr)
122-
nib.save(newobj, save_path)
123-
124-
probs_coronal = truenet_evaluate.evaluate_truenet(test_sub_dict, model_coronal, eval_params, device,
125-
mode='coronal', verbose=verbose)
126-
probs_coronal = truenet_data_postprocessing.resize_to_original_size(probs_coronal, test_sub_dict,
120+
nib.save(newobj, save_path)
121+
122+
probs_coronal = truenet_evaluate.evaluate_truenet(test_sub_dict, model_coronal, eval_params, device,
123+
mode='coronal', verbose=verbose)
124+
probs_coronal = truenet_data_postprocessing.resize_to_original_size(probs_coronal, test_sub_dict,
127125
plane='coronal')
128126
probs_combined.append(probs_coronal)
129-
127+
130128
if intermediate:
131129
save_path = os.path.join(output_dir,'Predicted_probmap_truenet_' + basename + '_coronal.nii.gz')
132130
preds_coronal = truenet_data_postprocessing.get_final_3dvolumes(probs_coronal, test_sub_dict)
133131
if verbose:
134132
print('Saving the intermediate Coronal prediction ...', flush=True)
135-
133+
136134
newhdr = flair_hdr.copy()
137135
newobj = nib.nifti1.Nifti1Image(preds_coronal, None, header=newhdr)
138-
nib.save(newobj, save_path)
139-
136+
nib.save(newobj, save_path)
137+
140138
probs_combined = np.array(probs_combined)
141139
prob_mean = np.mean(probs_combined,axis=0)
142-
140+
143141
save_path = os.path.join(output_dir,'Predicted_probmap_truenet_' + basename + '.nii.gz')
144142
pred_mean = truenet_data_postprocessing.get_final_3dvolumes(prob_mean, test_sub_dict)
145143
if verbose:
146144
print('Saving the final prediction ...', flush=True)
147145

148146
newhdr = flair_hdr.copy()
149147
newobj = nib.nifti1.Nifti1Image(pred_mean, None, header=newhdr)
150-
nib.save(newobj, save_path)
151-
148+
nib.save(newobj, save_path)
149+
152150
if verbose:
153151
print('Testing complete for all subjects!', flush=True)

truenet/utils/truenet_utils.py

Lines changed: 3 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ def select_train_val_names(data_path,val_numbers):
2222
:return:
2323
'''
2424
val_ids = random.choices(list(np.arange(len(data_path))),k=val_numbers)
25-
train_ids = np.setdiff1d(np.arange(len(data_path)),val_ids)
25+
train_ids = np.setdiff1d(np.arange(len(data_path)),val_ids)
2626
data_path_train = [data_path[ind] for ind in train_ids]
2727
data_path_val = [data_path[ind] for ind in val_ids]
2828
return data_path_train,data_path_val,val_ids
@@ -40,7 +40,7 @@ def freeze_layer_for_finetuning(model, layer_to_ft, verbose=False):
4040
model_layers_tobe_ftd = []
4141
for layer_id in layer_to_ft:
4242
model_layers_tobe_ftd.append(model_layer_names[layer_id-1])
43-
43+
4444
for name, child in model.module.named_children():
4545
if name in model_layers_tobe_ftd:
4646
if verbose:
@@ -54,24 +54,20 @@ def freeze_layer_for_finetuning(model, layer_to_ft, verbose=False):
5454
print(name + ' is frozen', flush=True)
5555
for param in child.parameters():
5656
param.requires_grad = False
57-
57+
5858
return model
5959

6060

6161
def loading_model(model_name, model, device, mode='weights'):
6262
if mode == 'weights':
6363
if device == 'cpu':
64-
print('utils:device used:' + device)
6564
axial_state_dict = torch.load(model_name, map_location='cpu')
6665
else:
67-
print('utils:device used:' + device)
6866
axial_state_dict = torch.load(model_name)
6967
else:
7068
if device == 'cpu':
71-
print('utils:device used:' + device)
7269
ckpt = torch.load(model_name, map_location='cpu')
7370
else:
74-
print('utils:device used:' + device)
7571
ckpt = torch.load(model_name)
7672
axial_state_dict = ckpt['model_state_dict']
7773

@@ -175,10 +171,3 @@ def save_checkpoint(self, val_loss, val_acc, best_val_acc, model, epoch, optimiz
175171
else:
176172
if self.verbose:
177173
print('Validation loss increased; Exiting without saving the model ...')
178-
179-
180-
181-
182-
183-
184-

0 commit comments

Comments
 (0)