-
Notifications
You must be signed in to change notification settings - Fork 1
/
shootout.cpp
377 lines (346 loc) · 9.17 KB
/
shootout.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
* This function is for performance testing different toy ciphers.
*
* See https://www.pauldreik.se/talks/20200123_crypto/
*
* By Paul Dreik 2019,2020
* https://www.pauldreik.se/
* License: Boost 1.0
* SPDX-License-Identifier: BSL-1.0
*/
#include <cassert>
#include <functional>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "AesFunc.h"
#include "Fnv1aCiphers.h"
#include "GenericFeistel.h"
#include "LazyFisherYates.h"
#include "PlaygroundFeistel.h"
#include "ShaFeistel.h"
#include "XoroFeistel.h"
#include "simdfeistel.h"
#include "murmur32.h"
// empty test function in another translation unit
void
donothing(unsigned int);
template<typename Integer, typename Callback>
void
std_shuffle(Integer N, Callback&& cb)
{
std::unique_ptr<Integer[]> storage(new Integer[N]);
Integer* v = storage.get();
for (Integer i = 0; i < N; ++i) {
v[i] = i;
}
std::shuffle(v, v + N, std::random_device{});
for (Integer i = 0; i < N; ++i) {
cb(i);
}
}
template<typename Integer, typename Callback>
void
std_shuffle_vector(Integer N, Callback&& cb)
{
std::vector<Integer> v(N);
for (Integer i = 0; i < N; ++i) {
v[i] = i;
}
std::shuffle(begin(v), end(v), std::random_device{});
for (Integer i = 0; i < N; ++i) {
cb(i);
}
}
template<typename Integer, typename Callback>
void
ordinary_for(Integer N, Callback&& cb)
{
for (Integer i = 0; i < N; ++i) {
cb(i);
}
}
/**
* this is to compare with ordinary_for, so the overhead of invoking
* f can be measured compared to the loop
*/
template<typename Integer, typename Callback>
void
ordinary_for_twice(Integer N, Callback&& cb)
{
for (Integer i = 0; i < N; ++i) {
cb(i);
cb(i);
}
}
/**
* This may actually optimize differently than the ordinary for loop
*/
template<typename Integer, typename Callback>
void
do_while(Integer N, Callback&& cb)
{
Integer i = 0;
do {
cb(i);
} while (++i < N);
}
/**
* sequential with optional unrolling
*/
template<int Unroll, typename Integer, typename Callback>
void
sequential_for_each(Integer N, Callback&& cb)
{
if constexpr (Unroll == 1) {
for (Integer i = 0; i < N; ++i) {
cb(i);
}
} else {
static_assert(Unroll > 1 && Unroll <= 4, "handle other unroll values");
Integer i = 0;
const Integer stop = (N / Unroll) * Unroll;
for (; i < stop; i += Unroll) {
cb(i);
if constexpr (Unroll > 1)
cb(i + 1);
if constexpr (Unroll > 2)
cb(i + 2);
if constexpr (Unroll > 3)
cb(i + 3);
if constexpr (Unroll > 4)
cb(i + 4);
}
for (; i < N; ++i) {
cb(i);
}
}
}
/**
* sequential with xor (to see if the branch predictor gets
* a harder time than sequential)
*/
template<typename Integer, typename URNG, typename Callback>
void
xored_for_each(Integer N, URNG&& rng, Callback&& cb)
{
static_assert(sizeof(decltype(rng())) >= sizeof(Integer));
Integer key = rng();
// lazy way of zeroing the upper bits
while (key > N) {
key >>= 1;
}
Integer count = 0;
for (Integer i = 0; count < N; ++i) {
const auto k = i ^ key;
if (k < N) {
cb(k);
++count;
}
}
}
/**
* invokes cb N times with an integer in [0,N) selected
* randomly each time
*/
template<typename Integer, typename URBG, typename Callback>
void
random_for_each(Integer N, URBG&& rng, Callback&& cb)
{
assert(N > 0);
std::uniform_int_distribution<Integer> dist(0, N - 1);
for (Integer i = 0; i < N; ++i) {
Integer j = dist(rng);
cb(j);
}
}
/**
* block cipher based visitation of each integer exactly
* once
*/
template<typename Crypto, typename Integer, typename URBG, typename Callback>
void
crypto_for_each(Integer M, URBG&& rng, Callback&& cb)
{
// how many bits do we need?
int bitsneeded = static_cast<int>(std::ceil(std::log2(M)));
// round up to even
bitsneeded /= 2;
bitsneeded *= 2;
if (bitsneeded <= 32) {
Crypto cipher(bitsneeded);
// auto s=sizeof(cipher);
cipher.seed(rng);
Integer count = 0;
for (Integer i = 0; count < M; ++i) {
auto encrypted = cipher.encrypt(i);
if (encrypted < M) {
cb(encrypted);
++count;
}
}
return;
}
std::puts("implement switching to 64 bit");
std::abort();
}
/**
* like feistel_for_each, but simd parallelized
*/
template<typename Integer, typename URBG, typename Callback>
void
simdfeistel_for_each(Integer M, URBG&& rng, Callback&& cb)
{
// how many bits do we need?
int bitsneeded = static_cast<int>(std::ceil(std::log2(M)));
// round up to even
bitsneeded /= 2;
bitsneeded *= 2;
if (bitsneeded <= 32) {
ParallelFeistel cipher(bitsneeded);
cipher.seed(rng);
ManyU32 II(0, 1, 2, 3, 4, 5, 6, 7);
const ManyU32 ones(1);
for (Integer count = 0; count < M; II += ones) {
auto ea = cipher.encrypt(II).toArray();
for (auto encrypted : ea) {
if (encrypted < M) {
cb(encrypted);
++count;
if (count >= M) {
return;
}
}
}
}
return;
}
std::puts("implement switching to 64 bit");
std::abort();
}
template<typename Integer, typename URBG, typename Callback>
void
simdmurmur_for_each(Integer M, URBG&& rng, Callback&& cb)
{
// how many bits do we need?
int bitsneeded = static_cast<int>(std::ceil(std::log2(M)));
if (bitsneeded <= 32) {
SimdMurmur32 cipher(bitsneeded);
cipher.seed(rng);
ManyU32 II(0, 1, 2, 3, 4, 5, 6, 7);
const ManyU32 ones(1);
for (Integer count = 0; count < M; II += ones) {
auto ea = cipher.encrypt(II).toArray();
for (auto encrypted : ea) {
if (encrypted < M) {
cb(encrypted);
++count;
if (count >= M) {
return;
}
}
}
}
return;
}
std::puts("implement switching to 64 bit");
std::abort();
}
int
main(int argc, char* argv[])
{
assert(argc > 1 && "first arg should be algo name");
const std::string algoname{ argv[1] };
// arg 2 - size of test
const unsigned long long Ntmp = argc > 2 ? std::stoull(argv[2]) : (1U << 30);
using Integer = std::uint32_t;
if (Ntmp >= std::numeric_limits<Integer>::max()) {
std::puts("sorry, too large for the test");
return EXIT_FAILURE;
}
const Integer N = static_cast<Integer>(Ntmp);
std::map<std::string, std::function<void()>> functions;
auto work = [](auto x) {
#if 1
donothing(x);
#else
auto actual = count_set_bits(x);
auto expected = __builtin_popcount(x);
assert(actual == expected);
#endif
};
functions["xor"] = [&]() { xored_for_each(N, std::random_device{}, work); };
functions["dowhile"] = [&]() { do_while(N, work); };
functions["sequential"] = [&]() { ordinary_for(N, work); };
functions["sequential_twice"] = [&]() { ordinary_for_twice(N, work); };
functions["sequential_unroll1"] = [&]() { sequential_for_each<1>(N, work); };
functions["sequential_unroll2"] = [&]() { sequential_for_each<2>(N, work); };
functions["sequential_unroll3"] = [&]() { sequential_for_each<3>(N, work); };
functions["sequential_unroll4"] = [&]() { sequential_for_each<4>(N, work); };
functions["random_minstd"] = [&]() {
random_for_each(N, std::minstd_rand{ std::random_device{}() }, work);
};
functions["random_mt19937"] = [&]() {
random_for_each(N, std::mt19937{ std::random_device{}() }, work);
};
functions["random_mt19937_64"] = [&]() {
random_for_each(N, std::mt19937_64{ std::random_device{}() }, work);
};
functions["lazy_fisher_yates_19937"] = [&]() {
lazy_fisher_yates(N, std::mt19937{ std::random_device{}() }, work);
};
functions["std_shuffle"] = [&]() { std_shuffle(N, work); };
functions["std_shuffle_vector"] = [&]() { std_shuffle_vector(N, work); };
functions["fn1va_feistel"] = [&]() {
crypto_for_each<Dynamic32>(N, std::random_device{}, work);
};
functions["aes_feistel"] = [&]() {
crypto_for_each<Aes32<2>>(N, std::random_device{}, work);
};
functions["aes_feistel_rounds4"] = [&]() {
crypto_for_each<Aes32<4>>(N, std::random_device{}, work);
};
functions["sha1_feistel"] = [&]() {
crypto_for_each<ShaFeistel32<2>>(N, std::random_device{}, work);
};
functions["murmur"] = [&]() {
crypto_for_each<Murmur32>(N, std::random_device{}, work);
};
functions["simdmurmur"] = [&]() {
simdmurmur_for_each(N, std::random_device{}, work);
};
functions["xoro_feistel"] = [&]() {
crypto_for_each<XoroFeistel32<2>>(N, std::random_device{}, work);
};
functions["playground_feistel"] = [&]() {
crypto_for_each<PlaygroundFeistel<2>>(N, std::random_device{}, work);
};
functions["simd_feistel"] = [&]() {
simdfeistel_for_each(N, std::random_device{}, work);
};
if (algoname == "--list") {
for (auto& e : functions) {
std::puts(e.first.c_str());
}
std::exit(EXIT_SUCCESS);
}
if (algoname == "--compiler") {
#define STRINGIFY2(x) #x
#define STRINGIFY(x) STRINGIFY2(x)
#if defined(__clang__)
std::puts("clang-" STRINGIFY(__clang_major__));
#elif defined(__GNUC__)
std::puts("gcc-" STRINGIFY(__GNUC__));
#else
std::puts("unknown");
#endif
std::exit(EXIT_SUCCESS);
}
auto it = functions.find(algoname);
if (it == functions.end()) {
std::puts("could not find that function");
std::exit(EXIT_FAILURE);
}
it->second();
}