-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsandp_genre_classification.py
123 lines (100 loc) · 4.74 KB
/
sandp_genre_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pandas as pd
import numpy as np
import tensorflow as tf
import tensorflow.keras.utils as utils
import tensorflow.keras.layers as layers
import tensorflow.keras.optimizers as optimizers
import tensorflow.keras.losses as losses
from tensorflow.keras import Sequential
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
VALIDATION_SPLIT = 0.3
df_train = pd.read_csv('features_30_sec.csv', dtype = float, converters = {'filename': str, 'label': str})
# names = ["filename", "length",
# "chroma_stft_mean", "chroma_stft_var", "rms_mean", "rms_var", "spectral_centroid_mean",
# "spectral_centroid_var", "spectral_bandwidth_mean", "spectral_bandwidth_var", "rolloff_mean",
# "rolloff_var", "zero_crossing_rate_mean", "zero_crossing_rate_var", "harmony_mean", "harmony_var",
# "perceptr_mean", "perceptr_var", "tempo", "mfcc1_mean", "mfcc1_var", "mfcc2_mean", "mfcc2_var",
# "mfcc3_mean", "mfcc3_var", "mfcc4_mean", "mfcc4_var", "mfcc5_mean", "mfcc5_var", "mfcc6_mean",
# "mfcc6_var", "mfcc7_mean", "mfcc7_var", "mfcc8_mean", "mfcc8_var", "mfcc9_mean", "mfcc9_var",
# "mfcc10_mean", "mfcc10_var", "mfcc11_mean", "mfcc11_var", "mfcc12_mean", "mfcc12_var", "mfcc13_mean",
# "mfcc13_var", "mfcc14_mean", "mfcc14_var", "mfcc15_mean", "mfcc15_var", "mfcc16_mean", "mfcc16_var",
# "mfcc17_mean", "mfcc17_var", "mfcc18_mean", "mfcc18_var", "mfcc19_mean", "mfcc19_var", "mfcc20_mean",
# "mfcc20_var", "label"
# ]
df_train.pop("filename")
df_train.pop("length")
print(df_train.dtypes)
df_train = df_train.iloc[1:]
df_features = df_train.copy()
df_labels = df_features.pop('label')
print(df_train.head()) # just for funsies
for c in df_features:
df_features[c] = df_features[c].to_numpy()
#df_features = df_features.to_numpy()
X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(df_features, df_labels, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)
print("x:")
print(X_train)
X_train = np.asarray(X_train).astype(np.float32)
Y_train = np.asarray(Y_train).astype(np.string_)
print("x_train:")
print(X_train)
print("y:")
print(Y_train)
#df_features = np.array(df_features)
# for c in df_features:
# df_features[c] = df_features[c].astype(np.float32) # probably where the error occured
print(df_features)
df_model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(1)
outputs = layers.Dense(10, activation = 'softmax')(outputs)
])
df_model.compile(loss = tf.keras.losses.MeanSquaredError(),
optimizer = tf.keras.optimizers.legacy.Adam())
df_model.fit(
X_train,
Y_train,
batch_size = 32,
epochs = 10,
validation_data = (X_val, Y_val),
)
# names = [
# "chroma_stft_mean", "chroma_stft_var", "rms_mean", "rms_var", "spectral_centroid_mean",
# "spectral_centroid_var", "spectral_bandwidth_mean", "spectral_bandwidth_var", "rolloff_mean",
# "rolloff_var", "zero_crossing_rate_mean", "zero_crossing_rate_var", "harmony_mean", "harmony_var",
# "perceptr_mean", "perceptr_var", "tempo", "mfcc1_mean", "mfcc1_var", "mfcc2_mean", "mfcc2_var",
# "mfcc3_mean", "mfcc3_var", "mfcc4_mean", "mfcc4_var", "mfcc5_mean", "mfcc5_var", "mfcc6_mean",
# "mfcc6_var", "mfcc7_mean", "mfcc7_var", "mfcc8_mean", "mfcc8_var", "mfcc9_mean", "mfcc9_var",
# "mfcc10_mean", "mfcc10_var", "mfcc11_mean", "mfcc11_var", "mfcc12_mean", "mfcc12_var", "mfcc13_mean",
# "mfcc13_var", "mfcc14_mean", "mfcc14_var", "mfcc15_mean", "mfcc15_var", "mfcc16_mean", "mfcc16_var",
# "mfcc17_mean", "mfcc17_var", "mfcc18_mean", "mfcc18_var", "mfcc19_mean", "mfcc19_var", "mfcc20_mean",
# "mfcc20_var", "label"
# ]
# make a function that makes a row from a dataframe into a tuple with the first item being the entire row except for the last item and the second item being the last item in the row's data
# def dfToTuple(row): # row = row from dataframe (since we r mapping somehow..) (is the dtype of row a df?)
# df1 = pd.DataFrame[row:"label"]
# df2 = 2
# newTuple = (df1, df2)
# return newTuple
# tupleList = []
# for index, row in df.iterrows():
# print(row)
# if index == 10:
# quit()
# # newTuple =
# # tupleList += newTuple
# # music_features = music_train.copy()
# train, validation = utils.text_dataset_from_directory
# music_model = tf.keras.Sequential([
# layers.Dense(64, activation='relu'),
# layers.Dense(1)
# ])
# music_model.compile(loss = tf.keras.losses.MeanSquaredError(),
# optimizer = tf.keras.optimizers.Adam())
# music_model.fit(
# train,
# validation_data = valid,
# epochs = 10,
# )