forked from enarjord/passivbot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpso_custom.py
273 lines (248 loc) · 12.7 KB
/
pso_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from multiprocessing import shared_memory, Pool
from collections import OrderedDict
from backtest import backtest
from plotting import plot_fills
from downloader import Downloader, prep_config
from pure_funcs import denumpyize, numpyize, get_template_live_config, candidate_to_live_config, calc_spans, \
get_template_live_config, unpack_config, pack_config, analyze_fills, ts_to_date, denanify, round_dynamic, \
tuplify
from procedures import dump_live_config, load_live_config, make_get_filepath, add_argparse_args, get_starting_configs
from time import time, sleep
from optimize import get_expanded_ranges, single_sliding_window_run, objective_function
from bisect import bisect
from typing import Callable
from prettytable import PrettyTable
from hashlib import sha256
import os
import sys
import argparse
import pprint
import matplotlib.pyplot as plt
import json
import pandas as pd
import numpy as np
import asyncio
import glob
def pso_multiprocess(reward_func: Callable,
n_particles: int,
bounds: np.ndarray,
c1: float,
c2: float,
w: float,
lr: float = 1.0,
initial_positions: [np.ndarray] = [],
n_cpus: int = 3,
iters: int = 10000,
post_processing_func: Callable = lambda x: x):
'''
if len(initial_positions) <= n_particles: use initial positions as particles, let remainder be random
else: let n_particles = len(initial_positions)
'''
def get_new_velocity_and_position(velocity, position, lbest_, gbest_) -> (np.ndarray, np.ndarray):
new_velocity = (
w * velocity
+ c1 * np.random.random(velocity.shape) * (lbest_ - position)
+ c2 * np.random.random(velocity.shape) * (gbest_ - position)
)
new_position = position + lr * new_velocity
new_position = np.where(new_position > bounds[0], new_position, bounds[0])
new_position = np.where(new_position < bounds[1], new_position, bounds[1])
return new_velocity, new_position
if len(initial_positions) > n_particles:
positions = numpyize(initial_positions)
else:
positions = numpyize([[np.random.uniform(bounds[0][i], bounds[1][i])
for i in range(len(bounds[0]))]
for _ in range(n_particles)])
if len(initial_positions) > 0:
positions[:len(initial_positions)] = initial_positions[:len(positions)]
positions = np.where(positions > bounds[0], positions, bounds[0])
positions = np.where(positions < bounds[1], positions, bounds[1])
# velocities = np.zeros_like(positions)
velocities = (np.random.random(positions.shape) - 0.5) * 0.0001 # init velocities to small random number
lbests = np.zeros_like(positions)
lbest_scores = np.zeros(len(positions))
lbest_scores[:] = np.inf
gbest = np.zeros_like(positions[0])
gbest_score = np.inf
tested = set()
itr_counter = 0
worker_cycler = 0
pos_cycler = 0
workers = [None for _ in range(n_cpus)]
working = set()
pool = Pool(processes=n_cpus)
while True:
if itr_counter >= iters:
if all(worker is None for worker in workers):
break
else:
if workers[worker_cycler] is None:
if pos_cycler not in working:
pos_hash = sha256(str(positions[pos_cycler]).encode('utf-8')).hexdigest()
for _ in range(100):
if pos_hash not in tested:
break
print('debug duplicate candidate')
print('pos', positions[pos_cycler])
print('vel', velocities[pos_cycler])
velocities[pos_cycler], positions[pos_cycler] = \
get_new_velocity_and_position(velocities[pos_cycler],
positions[pos_cycler],
lbests[pos_cycler],
gbest)
pos_hash = sha256(str(positions[pos_cycler]).encode('utf-8')).hexdigest()
else:
print('too many duplicates, choosing random position')
positions[pos_cycler] = numpyize([np.random.uniform(bounds[0][i], bounds[1][i])
for i in range(len(bounds[0]))])
#raise Exception('too many duplicate candidates')
tested.add(pos_hash)
workers[worker_cycler] = (pos_cycler, pool.apply_async(reward_func, args=(positions[pos_cycler],)))
working = set([e[0] for e in workers if e is not None])
pos_cycler = (pos_cycler + 1) % len(positions)
if workers[worker_cycler] is not None and workers[worker_cycler][1].ready():
score = post_processing_func(workers[worker_cycler][1].get())
pos_idx = workers[worker_cycler][0]
workers[worker_cycler] = None
working = set([e[0] for e in workers if e is not None])
itr_counter += 1
if score < lbest_scores[pos_idx]:
lbests[pos_idx], lbest_scores[pos_idx] = positions[pos_idx], score
if score < gbest_score:
gbest, gbest_score = positions[pos_idx], score
velocities[pos_cycler], positions[pos_cycler] = \
get_new_velocity_and_position(velocities[pos_cycler],
positions[pos_cycler],
lbests[pos_cycler],
gbest)
worker_cycler = (worker_cycler + 1) % len(workers)
sleep(0.001)
return gbest, gbest_score
class PostProcessing:
def __init__(self):
self.all_backtest_analyses = []
def process(self, result):
score, analysis, config = result
score = -score
best_score = self.all_backtest_analyses[0][0] if self.all_backtest_analyses else 9e9
analysis['score'] = score
idx = bisect([e[0] for e in self.all_backtest_analyses], score)
self.all_backtest_analyses.insert(idx, (score, analysis))
to_dump = denumpyize({**analysis, **pack_config(config)})
f"{len(self.all_backtest_analyses): <5}"
table = PrettyTable()
table.field_names = ['adg', 'bkr_dist', 'eqbal_ratio', 'shrp', 'hrs_no_fills',
'hrs_no_fills_ss', 'mean_hrs_btwn_fills', 'n_slices', 'score']
for elm in self.all_backtest_analyses[:20] + [(score, analysis)]:
row = [round_dynamic(e, 6)
for e in [elm[1]['average_daily_gain'],
elm[1]['closest_bkr'],
elm[1]['lowest_eqbal_ratio'],
elm[1]['sharpe_ratio'],
elm[1]['max_hrs_no_fills'],
elm[1]['max_hrs_no_fills_same_side'],
elm[1]['mean_hrs_between_fills'],
elm[1]['completed_slices'],
elm[1]['score']]]
table.add_row(row)
output = table.get_string(border=True, padding_width=1)
print(f'\n\n{len(self.all_backtest_analyses)}')
print(output)
with open(config['optimize_dirpath'] + 'results.txt', 'a') as f:
f.write(json.dumps(to_dump) + '\n')
if score < best_score:
dump_live_config(to_dump, config['optimize_dirpath'] + 'current_best.json')
return score
def get_bounds(ranges: dict) -> tuple:
return np.array([np.array([float(v[0]) for k, v in ranges.items()]),
np.array([float(v[1]) for k, v in ranges.items()])])
class BacktestWrap:
def __init__(self, data, config):
self.data = data
self.config = config
self.expanded_ranges = get_expanded_ranges(config)
for k in list(self.expanded_ranges):
if self.expanded_ranges[k][0] == self.expanded_ranges[k][1]:
del self.expanded_ranges[k]
self.bounds = get_bounds(self.expanded_ranges)
def config_to_xs(self, config):
xs = np.zeros(len(self.bounds[0]))
unpacked = unpack_config(config)
for i, k in enumerate(self.expanded_ranges):
xs[i] = unpacked[k]
return xs
def xs_to_config(self, xs):
config = self.config.copy()
for i, k in enumerate(self.expanded_ranges):
config[k] = xs[i]
return numpyize(denanify(pack_config(config)))
def rf(self, xs):
config = self.xs_to_config(xs)
score, analyses = single_sliding_window_run(config, self.data, do_print=True)
analysis = {}
for key in ['exchange', 'symbol', 'n_days', 'starting_balance']:
analysis[key] = analyses[-1][key]
for key in ['average_periodic_gain', 'average_daily_gain', 'adjusted_daily_gain', 'sharpe_ratio']:
analysis[key] = np.mean([a[key] for a in analyses])
for key in ['final_balance', 'final_equity', 'net_pnl_plus_fees', 'gain', 'profit_sum',
'n_fills', 'n_entries', 'n_closes', 'n_reentries', 'n_initial_entries',
'n_normal_closes', 'n_stop_loss_closes', 'biggest_psize', 'mean_hrs_between_fills',
'mean_hrs_between_fills_long', 'mean_hrs_between_fills_shrt', 'max_hrs_no_fills_long',
'max_hrs_no_fills_shrt', 'max_hrs_no_fills_same_side', 'max_hrs_no_fills']:
analysis[key] = np.max([a[key] for a in analyses])
for key in ['loss_sum', 'fee_sum', 'lowest_eqbal_ratio', 'closest_bkr']:
analysis[key] = np.min([a[key] for a in analyses])
analysis['completed_slices'] = len(analyses)
return score, analysis, config
async def main():
parser = argparse.ArgumentParser(prog='Optimize', description='Optimize passivbot config.')
parser = add_argparse_args(parser)
parser.add_argument('-t', '--start', type=str, required=False, dest='starting_configs',
default=None,
help='start with given live configs. single json file or dir with multiple json files')
args = parser.parse_args()
for config in await prep_config(args):
try:
template_live_config = get_template_live_config(config['n_spans'])
config = {**template_live_config, **config}
dl = Downloader(config)
data = await dl.get_sampled_ticks()
shm = shared_memory.SharedMemory(create=True, size=data.nbytes)
shdata = np.ndarray(data.shape, dtype=data.dtype, buffer=shm.buf)
shdata[:] = data
del data
config['n_days'] = (shdata[-1][0] - shdata[0][0]) / (1000 * 60 * 60 * 24)
config['optimize_dirpath'] = make_get_filepath(os.path.join(config['optimize_dirpath'],
ts_to_date(time())[:19].replace(':', ''), ''))
print()
for k in (keys := ['exchange', 'symbol', 'starting_balance', 'start_date', 'end_date', 'latency_simulation_ms',
'do_long', 'do_shrt', 'minimum_bankruptcy_distance', 'maximum_hrs_no_fills',
'maximum_hrs_no_fills_same_side', 'iters', 'n_particles', 'sliding_window_size',
'n_spans']):
if k in config:
print(f"{k: <{max(map(len, keys)) + 2}} {config[k]}")
print()
backtest_wrap = BacktestWrap(shdata, config)
post_processing = PostProcessing()
if config['starting_configs']:
starting_configs = get_starting_configs(config)
initial_positions = [backtest_wrap.config_to_xs(cfg) for cfg in starting_configs]
else:
initial_positions = []
pso_multiprocess(backtest_wrap.rf,
config['n_particles'],
backtest_wrap.bounds,
config['options']['c1'],
config['options']['c2'],
config['options']['w'],
n_cpus=config['num_cpus'],
iters=config['iters'],
initial_positions=initial_positions,
post_processing_func=post_processing.process)
finally:
del shdata
shm.close()
shm.unlink()
if __name__ == '__main__':
asyncio.run(main())