forked from flashrom/flashrom
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsb600spi.c
773 lines (687 loc) · 26.8 KB
/
sb600spi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Wang Qingpei <Qingpei.Wang@amd.com>
* Copyright (C) 2008 Joe Bao <Zheng.Bao@amd.com>
* Copyright (C) 2008 Advanced Micro Devices, Inc.
* Copyright (C) 2009, 2010, 2013 Carl-Daniel Hailfinger
* Copyright (C) 2013 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(__i386__) || defined(__x86_64__)
#include <string.h>
#include <stdlib.h>
#include "flash.h"
#include "programmer.h"
#include "hwaccess.h"
#include "spi.h"
/* This struct is unused, but helps visualize the SB600 SPI BAR layout.
*struct sb600_spi_controller {
* unsigned int spi_cntrl0; / * 00h * /
* unsigned int restrictedcmd1; / * 04h * /
* unsigned int restrictedcmd2; / * 08h * /
* unsigned int spi_cntrl1; / * 0ch * /
* unsigned int spi_cmdvalue0; / * 10h * /
* unsigned int spi_cmdvalue1; / * 14h * /
* unsigned int spi_cmdvalue2; / * 18h * /
* unsigned int spi_fakeid; / * 1Ch * /
*};
*/
static uint8_t *sb600_spibar = NULL;
enum amd_chipset {
CHIPSET_AMD_UNKNOWN,
CHIPSET_SB6XX,
CHIPSET_SB7XX, /* SP5100 too */
CHIPSET_SB89XX, /* Hudson-1 too */
CHIPSET_HUDSON234,
CHIPSET_BOLTON,
CHIPSET_YANGTZE,
};
static enum amd_chipset amd_gen = CHIPSET_AMD_UNKNOWN;
#define FIFO_SIZE_OLD 8
#define FIFO_SIZE_YANGTZE 67
static int sb600_spi_send_command(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr);
static int spi100_spi_send_command(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr);
static struct spi_master spi_master_sb600 = {
.type = SPI_CONTROLLER_SB600,
.max_data_read = FIFO_SIZE_OLD,
.max_data_write = FIFO_SIZE_OLD - 3,
.command = sb600_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
static struct spi_master spi_master_yangtze = {
.type = SPI_CONTROLLER_YANGTZE,
.max_data_read = FIFO_SIZE_YANGTZE - 3, /* Apparently the big SPI 100 buffer is not a ring buffer. */
.max_data_write = FIFO_SIZE_YANGTZE - 3,
.command = spi100_spi_send_command,
.multicommand = default_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
static void determine_generation(struct pci_dev *dev)
{
amd_gen = CHIPSET_AMD_UNKNOWN;
msg_pdbg2("Trying to determine the generation of the SPI interface... ");
if (dev->device_id == 0x438d) {
amd_gen = CHIPSET_SB6XX;
msg_pdbg("SB6xx detected.\n");
} else if (dev->device_id == 0x439d) {
struct pci_dev *smbus_dev = pci_dev_find(0x1002, 0x4385);
if (smbus_dev == NULL)
return;
uint8_t rev = pci_read_byte(smbus_dev, PCI_REVISION_ID);
if (rev >= 0x39 && rev <= 0x3D) {
amd_gen = CHIPSET_SB7XX;
msg_pdbg("SB7xx/SP5100 detected.\n");
} else if (rev >= 0x40 && rev <= 0x42) {
amd_gen = CHIPSET_SB89XX;
msg_pdbg("SB8xx/SB9xx/Hudson-1 detected.\n");
} else {
msg_pwarn("SB device found but SMBus revision 0x%02x does not match known values.\n"
"Assuming SB8xx/SB9xx/Hudson-1. Please send a log to flashrom@flashrom.org\n",
rev);
amd_gen = CHIPSET_SB89XX;
}
} else if (dev->device_id == 0x780e) {
/* The PCI ID of the LPC bridge doesn't change between Hudson-2/3/4 and Yangtze (Kabini/Temash)
* although they use different SPI interfaces. */
#ifdef USE_YANGTZE_HEURISTICS
/* This heuristic accesses the SPI interface MMIO BAR at locations beyond those supported by
* Hudson in the hope of getting 0xff readback on older chipsets and non-0xff readback on
* Yangtze (and newer, compatible chipsets). */
int i;
msg_pdbg("Checking for AMD Yangtze (Kabini/Temash) or later... ");
for (i = 0x20; i <= 0x4f; i++) {
if (mmio_readb(sb600_spibar + i) != 0xff) {
amd_gen = CHIPSET_YANGTZE;
msg_pdbg("found.\n");
return;
}
}
msg_pdbg("not found. Assuming Hudson.\n");
amd_gen = CHIPSET_HUDSON234;
#else
struct pci_dev *smbus_dev = pci_dev_find(0x1022, 0x780B);
if (smbus_dev == NULL) {
msg_pdbg("No SMBus device with ID 1022:780B found.\n");
return;
}
uint8_t rev = pci_read_byte(smbus_dev, PCI_REVISION_ID);
if (rev >= 0x11 && rev <= 0x15) {
amd_gen = CHIPSET_HUDSON234;
msg_pdbg("Hudson-2/3/4 detected.\n");
} else if (rev == 0x16) {
amd_gen = CHIPSET_BOLTON;
msg_pdbg("Bolton detected.\n");
} else if ((rev >= 0x39 && rev <= 0x3A) || rev == 0x42) {
amd_gen = CHIPSET_YANGTZE;
msg_pdbg("Yangtze detected.\n");
} else {
msg_pwarn("FCH device found but SMBus revision 0x%02x does not match known values.\n"
"Please report this to flashrom@flashrom.org and include this log and\n"
"the output of lspci -nnvx, thanks!.\n", rev);
}
} else if (dev->device_id == 0x790e) {
struct pci_dev *smbus_dev = pci_dev_find(0x1022, 0x790B);
if (smbus_dev == NULL) {
msg_pdbg("No SMBus device with ID 1022:790B found.\n");
return;
}
uint8_t rev = pci_read_byte(smbus_dev, PCI_REVISION_ID);
if (rev == 0x4a) {
amd_gen = CHIPSET_YANGTZE;
msg_pdbg("Yangtze detected.\n");
} else {
msg_pwarn("FCH device found but SMBus revision 0x%02x does not match known values.\n"
"Please report this to flashrom@flashrom.org and include this log and\n"
"the output of lspci -nnvx, thanks!.\n", rev);
}
#endif
} else
msg_pwarn("%s: Unknown LPC device %" PRIx16 ":%" PRIx16 ".\n"
"Please report this to flashrom@flashrom.org and include this log and\n"
"the output of lspci -nnvx, thanks!\n",
__func__, dev->vendor_id, dev->device_id);
}
static void reset_internal_fifo_pointer(void)
{
mmio_writeb(mmio_readb(sb600_spibar + 2) | 0x10, sb600_spibar + 2);
/* FIXME: This loop needs a timeout and a clearer message. */
while (mmio_readb(sb600_spibar + 0xD) & 0x7)
msg_pspew("reset\n");
}
static int compare_internal_fifo_pointer(uint8_t want)
{
uint8_t have = mmio_readb(sb600_spibar + 0xd) & 0x07;
want %= FIFO_SIZE_OLD;
if (have != want) {
msg_perr("AMD SPI FIFO pointer corruption! Pointer is %d, wanted %d\n", have, want);
msg_perr("Something else is accessing the flash chip and causes random corruption.\n"
"Please stop all applications and drivers and IPMI which access the flash chip.\n");
return 1;
} else {
msg_pspew("AMD SPI FIFO pointer is %d, wanted %d\n", have, want);
return 0;
}
}
/* Check the number of bytes to be transmitted and extract opcode. */
static int check_readwritecnt(struct flashctx *flash, unsigned int writecnt, unsigned int readcnt)
{
unsigned int maxwritecnt = flash->mst->spi.max_data_write + 3;
if (writecnt > maxwritecnt) {
msg_pinfo("%s: SPI controller can not send %d bytes, it is limited to %d bytes\n",
__func__, writecnt, maxwritecnt);
return SPI_INVALID_LENGTH;
}
unsigned int maxreadcnt = flash->mst->spi.max_data_read;
if (readcnt > maxreadcnt) {
msg_pinfo("%s: SPI controller can not receive %d bytes, it is limited to %d bytes\n",
__func__, readcnt, maxreadcnt);
return SPI_INVALID_LENGTH;
}
return 0;
}
static void execute_command(void)
{
msg_pspew("Executing... ");
mmio_writeb(mmio_readb(sb600_spibar + 2) | 1, sb600_spibar + 2);
while (mmio_readb(sb600_spibar + 2) & 1)
;
msg_pspew("done\n");
}
static int sb600_spi_send_command(struct flashctx *flash, unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
/* First byte is cmd which can not be sent through the FIFO. */
unsigned char cmd = *writearr++;
writecnt--;
msg_pspew("%s, cmd=0x%02x, writecnt=%d, readcnt=%d\n", __func__, cmd, writecnt, readcnt);
mmio_writeb(cmd, sb600_spibar + 0);
int ret = check_readwritecnt(flash, writecnt, readcnt);
if (ret != 0)
return ret;
/* This is a workaround for a bug in SPI controller. If we only send
* an opcode and no additional data/address, the SPI controller will
* read one byte too few from the chip. Basically, the last byte of
* the chip response is discarded and will not end up in the FIFO.
* It is unclear if the CS# line is set high too early as well.
*/
unsigned int readoffby1 = (writecnt > 0) ? 0 : 1;
uint8_t readwrite = (readcnt + readoffby1) << 4 | (writecnt);
mmio_writeb(readwrite, sb600_spibar + 1);
reset_internal_fifo_pointer();
msg_pspew("Filling FIFO: ");
int count;
for (count = 0; count < writecnt; count++) {
msg_pspew("[%02x]", writearr[count]);
mmio_writeb(writearr[count], sb600_spibar + 0xC);
}
msg_pspew("\n");
if (compare_internal_fifo_pointer(writecnt))
return SPI_PROGRAMMER_ERROR;
/*
* We should send the data in sequence, which means we need to reset
* the FIFO pointer to the first byte we want to send.
*/
reset_internal_fifo_pointer();
execute_command();
if (compare_internal_fifo_pointer(writecnt + readcnt))
return SPI_PROGRAMMER_ERROR;
/*
* After the command executed, we should find out the index of the
* received byte. Here we just reset the FIFO pointer and skip the
* writecnt.
* It would be possible to increase the FIFO pointer by one instead
* of reading and discarding one byte from the FIFO.
* The FIFO is implemented on top of an 8 byte ring buffer and the
* buffer is never cleared. For every byte that is shifted out after
* the opcode, the FIFO already stores the response from the chip.
* Usually, the chip will respond with 0x00 or 0xff.
*/
reset_internal_fifo_pointer();
/* Skip the bytes we sent. */
msg_pspew("Skipping: ");
for (count = 0; count < writecnt; count++) {
msg_pspew("[%02x]", mmio_readb(sb600_spibar + 0xC));
}
msg_pspew("\n");
if (compare_internal_fifo_pointer(writecnt))
return SPI_PROGRAMMER_ERROR;
msg_pspew("Reading FIFO: ");
for (count = 0; count < readcnt; count++) {
readarr[count] = mmio_readb(sb600_spibar + 0xC);
msg_pspew("[%02x]", readarr[count]);
}
msg_pspew("\n");
if (compare_internal_fifo_pointer(writecnt+readcnt))
return SPI_PROGRAMMER_ERROR;
if (mmio_readb(sb600_spibar + 1) != readwrite) {
msg_perr("Unexpected change in AMD SPI read/write count!\n");
msg_perr("Something else is accessing the flash chip and causes random corruption.\n"
"Please stop all applications and drivers and IPMI which access the flash chip.\n");
return SPI_PROGRAMMER_ERROR;
}
return 0;
}
static int spi100_spi_send_command(struct flashctx *flash, unsigned int writecnt,
unsigned int readcnt,
const unsigned char *writearr,
unsigned char *readarr)
{
static u32 fifo_bounce[18];
/* First byte is cmd which can not be sent through the buffer. */
unsigned char cmd = *writearr++;
writecnt--;
msg_pspew("%s, cmd=0x%02x, writecnt=%d, readcnt=%d\n", __func__, cmd, writecnt, readcnt);
mmio_writeb(cmd, sb600_spibar + 0);
int ret = check_readwritecnt(flash, writecnt, readcnt);
if (ret != 0)
return ret;
/* Use the extended TxByteCount and RxByteCount registers. */
mmio_writeb(writecnt, sb600_spibar + 0x48);
mmio_writeb(readcnt, sb600_spibar + 0x4b);
msg_pspew("Filling buffer: ");
int count;
for (count = 0; count < writecnt; count++) {
msg_pspew("[%02x]", writearr[count]);
mmio_writeb(writearr[count], sb600_spibar + 0x80 + count);
}
msg_pspew("\n");
execute_command();
msg_pspew("Reading buffer: ");
for (count = (writecnt & ~0x03); count < (writecnt + readcnt); count += 4)
fifo_bounce[count/4] = mmio_readl(sb600_spibar + 0x80 + count);
for (count = writecnt; count < (writecnt + readcnt); count++)
msg_pspew("[%02x]", *((u8*)fifo_bounce + count));
memcpy(readarr, (u8*)fifo_bounce + writecnt, readcnt);
msg_pspew("\n");
return 0;
}
struct spispeed {
const char *const name;
const uint8_t speed;
};
static const struct spispeed spispeeds[] = {
{ "66 MHz", 0x00 },
{ "33 MHz", 0x01 },
{ "22 MHz", 0x02 },
{ "16.5 MHz", 0x03 },
{ "100 MHz", 0x04 },
{ "Reserved", 0x05 },
{ "Reserved", 0x06 },
{ "800 kHz", 0x07 },
};
static int set_speed(struct pci_dev *dev, const struct spispeed *spispeed)
{
bool success = false;
uint8_t fast_speed = spispeed->speed;
uint8_t speed = fast_speed;
/* Limit normal read to 33MHz. */
if (fast_speed == 0x00 || fast_speed == 0x04)
speed = 0x01;
if (amd_gen >= CHIPSET_YANGTZE) {
uint16_t tmp;
msg_pdbg("SPI clocks: (before)\n");
tmp = mmio_readw(sb600_spibar + 0x22);
msg_pdbg("NormSpeedNew is %s\n", spispeeds[(tmp >> 12) & 0xf].name);
msg_pdbg("FastSpeedNew is %s\n", spispeeds[(tmp >> 8) & 0xf].name);
msg_pdbg("AltSpeedNew is %s\n", spispeeds[(tmp >> 4) & 0xf].name);
msg_pdbg("TpmSpeedNew is %s\n", spispeeds[(tmp >> 0) & 0xf].name);
rmmio_writew((speed << 12) | (fast_speed << 8) | (speed << 4) | speed, sb600_spibar + 0x22);
msg_pdbg("SPI clocks: (after)\n");
tmp = mmio_readw(sb600_spibar + 0x22);
msg_pdbg("NormSpeedNew is %s\n", spispeeds[(tmp >> 12) & 0xf].name);
msg_pdbg("FastSpeedNew is %s\n", spispeeds[(tmp >> 8) & 0xf].name);
msg_pdbg("AltSpeedNew is %s\n", spispeeds[(tmp >> 4) & 0xf].name);
msg_pdbg("TpmSpeedNew is %s\n", spispeeds[(tmp >> 0) & 0xf].name);
success = (((tmp >> 12) & 0xf) == speed && ((tmp >> 8) & 0xf) == fast_speed &&
((tmp >> 4) & 0xf) == speed && ((tmp >> 0) & 0xf) == speed);
} else {
uint8_t tmp;
tmp = mmio_readb(sb600_spibar + 0x0d);
msg_pdbg("SPI clocks: (before)\n");
msg_pdbg("NormSpeed is %s\n", spispeeds[(tmp >> 4) & 0x3].name);
msg_pdbg("FastSpeed is %s\n", spispeeds[(tmp >> 6) & 0x3].name);
rmmio_writeb(((mmio_readb(sb600_spibar + 0xd) & ~(0xf << 4)) |
(fast_speed << 6) | (speed << 4)), sb600_spibar + 0xd);
tmp = mmio_readb(sb600_spibar + 0xd);
msg_pdbg("SPI clocks: (after)\n");
msg_pdbg("NormSpeed is %s\n", spispeeds[(tmp >> 4) & 0x3].name);
msg_pdbg("FastSpeed is %s\n", spispeeds[(tmp >> 6) & 0x3].name);
success = ((tmp & (0xf << 4)) == ((fast_speed << 6) | (speed << 4)));
}
if (!success) {
msg_perr("Setting SPI clock failed.\n");
return 1;
}
return 0;
}
static int set_mode(struct pci_dev *dev, uint8_t read_mode)
{
uint32_t tmp = mmio_readl(sb600_spibar + 0x00);
tmp &= ~(0x6 << 28 | 0x1 << 18); /* Clear mode bits */
tmp |= ((read_mode & 0x6) << 28) | ((read_mode & 0x1) << 18);
rmmio_writel(tmp, sb600_spibar + 0x00);
if (tmp != mmio_readl(sb600_spibar + 0x00))
return 1;
return 0;
}
static int handle_speed(struct pci_dev *dev)
{
uint32_t tmp;
uint8_t spispeed_idx;
/* Default max speed, switch to Fast Read mode also. */
if (amd_gen >= CHIPSET_BOLTON)
spispeed_idx = 0x04; /* Default to 100 MHz. */
else
spispeed_idx = 0x00; /* Default to 66 MHz. */
char *spispeed = extract_programmer_param("spispeed");
if (spispeed != NULL) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(spispeeds); i++) {
if (strcasecmp(spispeeds[i].name, spispeed) == 0) {
spispeed_idx = i;
break;
}
}
/* "reserved" is not a valid speed.
* Error out on speeds not present in the spispeeds array.
* Only Yangtze supports the second half of indices.
* No 66 MHz before SB8xx. */
if ((strcasecmp(spispeed, "reserved") == 0) ||
(i == ARRAY_SIZE(spispeeds)) ||
(amd_gen < CHIPSET_YANGTZE && spispeed_idx > 3) ||
(amd_gen < CHIPSET_SB89XX && spispeed_idx == 0)) {
msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed);
free(spispeed);
return 1;
}
free(spispeed);
}
/* See the chipset support matrix for SPI Base_Addr below for an explanation of the symbols used.
* bit 6xx 7xx/SP5100 8xx 9xx hudson1 hudson234 bolton/yangtze
* 18 rsvd <- fastReadEnable ? <- ? SpiReadMode[0]
* 29:30 rsvd <- <- ? <- ? SpiReadMode[2:1]
*/
if (amd_gen >= CHIPSET_BOLTON) {
static const char *spireadmodes[] = {
"Normal (up to 33 MHz)", /* 0 */
"Reserved", /* 1 */
"Dual IO (1-1-2)", /* 2 */
"Quad IO (1-1-4)", /* 3 */
"Dual IO (1-2-2)", /* 4 */
"Quad IO (1-4-4)", /* 5 */
"Normal (up to 66 MHz)", /* 6 */
"Fast Read", /* 7 (Not defined in the Bolton datasheet.) */
};
tmp = mmio_readl(sb600_spibar + 0x00);
uint8_t read_mode = ((tmp >> 28) & 0x6) | ((tmp >> 18) & 0x1);
msg_pdbg("SpiReadMode=%s (%i)\n", spireadmodes[read_mode], read_mode);
/* If 60MHz or 100MHz is requested, switch to Fast Read Mode. */
uint8_t wanted_read_mode = 6; /* Default to "Normal (up to 66 MHz)" */
if ((spispeeds[spispeed_idx].speed == 0x00) || (spispeeds[spispeed_idx].speed == 0x04))
wanted_read_mode = 7;
if (read_mode != wanted_read_mode) {
read_mode = wanted_read_mode;
if (set_mode(dev, read_mode) != 0) {
msg_perr("Setting read mode to \"%s\" failed.\n", spireadmodes[read_mode]);
return 1;
}
msg_pdbg("Setting read mode to \"%s\" succeeded.\n", spireadmodes[read_mode]);
}
if (amd_gen >= CHIPSET_YANGTZE) {
tmp = mmio_readb(sb600_spibar + 0x20);
msg_pdbg("UseSpi100 is %sabled\n", (tmp & 0x1) ? "en" : "dis");
if ((tmp & 0x1) == 0) {
rmmio_writeb(tmp | 0x1, sb600_spibar + 0x20);
tmp = mmio_readb(sb600_spibar + 0x20) & 0x1;
if (tmp == 0) {
msg_perr("Enabling Spi100 failed.\n");
return 1;
}
msg_pdbg("Enabling Spi100 succeeded.\n");
}
}
} else {
if (amd_gen >= CHIPSET_SB89XX && amd_gen <= CHIPSET_HUDSON234) {
bool fast_read = (mmio_readl(sb600_spibar + 0x00) >> 18) & 0x1;
msg_pdbg("Fast Reads are %sabled\n", fast_read ? "en" : "dis");
if (fast_read && (spispeed_idx != 0x0)) {
msg_pdbg("Disabling them temporarily.\n");
rmmio_writel(mmio_readl(sb600_spibar + 0x00) & ~(0x1 << 18),
sb600_spibar + 0x00);
}
if (!fast_read && (spispeed_idx == 0x0)) {
msg_pdbg("Enabling them temporarily.\n");
rmmio_writel(mmio_readl(sb600_spibar + 0x00) | (0x1 << 18),
sb600_spibar + 0x00);
}
}
tmp = (mmio_readb(sb600_spibar + 0xd) >> 4) & 0x3;
msg_pdbg("NormSpeed is %s\n", spispeeds[tmp].name);
}
return set_speed(dev, &spispeeds[spispeed_idx]);
}
#if 0
static int handle_imc(struct pci_dev *dev)
{
/* Handle IMC everywhere but sb600 which does not have one. */
if (amd_gen == CHIPSET_SB6XX)
return 0;
bool amd_imc_force = false;
char *arg = extract_programmer_param("amd_imc_force");
if (arg && !strcmp(arg, "yes")) {
amd_imc_force = true;
msg_pspew("amd_imc_force enabled.\n");
} else if (arg && !strlen(arg)) {
msg_perr("Missing argument for amd_imc_force.\n");
free(arg);
return 1;
} else if (arg) {
msg_perr("Unknown argument for amd_imc_force: \"%s\" (not \"yes\").\n", arg);
free(arg);
return 1;
}
free(arg);
/* TODO: we should not only look at IntegratedImcPresent (LPC Dev 20, Func 3, 40h) but also at
* IMCEnable(Strap) and Override EcEnable(Strap) (sb8xx, sb9xx?, a50, Bolton: Misc_Reg: 80h-87h;
* sb7xx, sp5100: PM_Reg: B0h-B1h) etc. */
uint8_t reg = pci_read_byte(dev, 0x40);
if ((reg & (1 << 7)) == 0) {
msg_pdbg("IMC is not active.\n");
return 0;
}
if (!amd_imc_force)
programmer_may_write = 0;
msg_pinfo("Writes have been disabled for safety reasons because the presence of the IMC\n"
"was detected and it could interfere with accessing flash memory. Flashrom will\n"
"try to disable it temporarily but even then this might not be safe:\n"
"when it is re-enabled and after a reboot it expects to find working code\n"
"in the flash and it is unpredictable what happens if there is none.\n"
"\n"
"To be safe make sure that there is a working IMC firmware at the right\n"
"location in the image you intend to write and do not attempt to erase.\n"
"\n"
"You can enforce write support with the amd_imc_force programmer option.\n");
if (amd_imc_force)
msg_pinfo("Continuing with write support because the user forced us to!\n");
return amd_imc_shutdown(dev);
}
#endif
int sb600_probe_spi(struct pci_dev *dev)
{
struct pci_dev *smbus_dev;
uint32_t tmp;
uint8_t reg;
/* Read SPI_BaseAddr */
tmp = pci_read_long(dev, 0xa0);
tmp &= 0xffffffe0; /* remove bits 4-0 (reserved) */
msg_pdbg("SPI base address is at 0x%x\n", tmp);
/* If the BAR has address 0, it is unlikely SPI is used. */
if (!tmp)
return 0;
/* Physical memory has to be mapped at page (4k) boundaries. */
sb600_spibar = rphysmap("SB600 SPI registers", tmp & 0xfffff000, 0x1000);
if (sb600_spibar == ERROR_PTR)
return ERROR_FATAL;
/* The low bits of the SPI base address are used as offset into
* the mapped page.
*/
sb600_spibar += tmp & 0xfff;
determine_generation(dev);
if (amd_gen == CHIPSET_AMD_UNKNOWN) {
msg_perr("Could not determine chipset generation.");
return ERROR_NONFATAL;
}
/* How to read the following table and similar ones in this file:
* "?" means we have no datasheet for this chipset generation or it doesn't have any relevant info.
* "<-" means the bit/register meaning is identical to the next non-"?" chipset to the left. "<-" thus
* never refers to another "?".
* If a "?" chipset is between two chipsets with identical meaning, we assume the meaning didn't change
* twice in between, i.e. the meaning is unchanged for the "?" chipset. Usually we assume that
* succeeding hardware supports the same functionality as its predecessor unless proven different by
* tests or documentation, hence "?" will often be implemented equally to "<-".
*
* Chipset support matrix for SPI Base_Addr (LPC PCI reg 0xa0)
* bit 6xx 7xx/SP5100 8xx 9xx hudson1 hudson2+ yangtze
* 3 rsvd <- <- ? <- ? RouteTpm2Spi
* 2 rsvd AbortEnable rsvd ? <- ? <-
* 1 rsvd SpiRomEnable <- ? <- ? <-
* 0 rsvd AltSpiCSEnable rsvd ? <- ? <-
*/
if (amd_gen >= CHIPSET_SB7XX) {
tmp = pci_read_long(dev, 0xa0);
msg_pdbg("SpiRomEnable=%i", (tmp >> 1) & 0x1);
if (amd_gen == CHIPSET_SB7XX)
msg_pdbg(", AltSpiCSEnable=%i, AbortEnable=%i", tmp & 0x1, (tmp >> 2) & 0x1);
else if (amd_gen == CHIPSET_YANGTZE)
msg_pdbg(", RouteTpm2Sp=%i", (tmp >> 3) & 0x1);
tmp = pci_read_byte(dev, 0xba);
msg_pdbg(", PrefetchEnSPIFromIMC=%i", (tmp & 0x4) >> 2);
tmp = pci_read_byte(dev, 0xbb);
/* FIXME: Set bit 3,6,7 if not already set.
* Set bit 5, otherwise SPI accesses are pointless in LPC mode.
* See doc 42413 AMD SB700/710/750 RPR.
*/
if (amd_gen == CHIPSET_SB7XX)
msg_pdbg(", SpiOpEnInLpcMode=%i", (tmp >> 5) & 0x1);
msg_pdbg(", PrefetchEnSPIFromHost=%i\n", tmp & 0x1);
}
/* Chipset support matrix for SPI_Cntrl0 (spibar + 0x0)
* See the chipset support matrix for SPI Base_Addr above for an explanation of the symbols used.
* bit 6xx 7xx/SP5100 8xx 9xx hudson1 hudson2+ yangtze
* 17 rsvd <- <- ? <- ? <-
* 18 rsvd <- fastReadEnable<1> ? <- ? SpiReadMode[0]<1>
* 19 SpiArbEnable <- <- ? <- ? <-
* 20 (FifoPtrClr) <- <- ? <- ? <-
* 21 (FifoPtrInc) <- <- ? <- ? IllegalAccess
* 22 SpiAccessMacRomEn <- <- ? <- ? <-
* 23 SpiHostAccessRomEn <- <- ? <- ? <-
* 24:26 ArbWaitCount <- <- ? <- ? <-
* 27 SpiBridgeDisable <- <- ? <- ? rsvd
* 28 rsvd DropOneClkOnRd = SPIClkGate ? <- ? <-
* 29:30 rsvd <- <- ? <- ? SpiReadMode[2:1]<1>
* 31 rsvd <- SpiBusy ? <- ? <-
*
* <1> see handle_speed
*/
tmp = mmio_readl(sb600_spibar + 0x00);
msg_pdbg("(0x%08" PRIx32 ") SpiArbEnable=%i", tmp, (tmp >> 19) & 0x1);
if (amd_gen == CHIPSET_YANGTZE)
msg_pdbg(", IllegalAccess=%i", (tmp >> 21) & 0x1);
msg_pdbg(", SpiAccessMacRomEn=%i, SpiHostAccessRomEn=%i, ArbWaitCount=%i",
(tmp >> 22) & 0x1, (tmp >> 23) & 0x1, (tmp >> 24) & 0x7);
if (amd_gen != CHIPSET_YANGTZE)
msg_pdbg(", SpiBridgeDisable=%i", (tmp >> 27) & 0x1);
switch (amd_gen) {
case CHIPSET_SB7XX:
msg_pdbg(", DropOneClkOnRd/SpiClkGate=%i", (tmp >> 28) & 0x1);
case CHIPSET_SB89XX:
case CHIPSET_HUDSON234:
case CHIPSET_YANGTZE:
msg_pdbg(", SpiBusy=%i", (tmp >> 31) & 0x1);
default: break;
}
msg_pdbg("\n");
if (((tmp >> 22) & 0x1) == 0 || ((tmp >> 23) & 0x1) == 0) {
msg_perr("ERROR: State of SpiAccessMacRomEn or SpiHostAccessRomEn prohibits full access.\n");
return ERROR_NONFATAL;
}
if (amd_gen >= CHIPSET_SB89XX) {
tmp = mmio_readb(sb600_spibar + 0x1D);
msg_pdbg("Using SPI_CS%d\n", tmp & 0x3);
/* FIXME: Handle SpiProtect* configuration on Yangtze. */
}
/* Look for the SMBus device. */
smbus_dev = pci_dev_find(0x1002, 0x4385);
if (!smbus_dev)
smbus_dev = pci_dev_find(0x1022, 0x780b); /* AMD FCH */
if (!smbus_dev)
smbus_dev = pci_dev_find(0x1022, 0x790b); /* AMD FP4 */
if (!smbus_dev) {
msg_perr("ERROR: SMBus device not found. Not enabling SPI.\n");
return ERROR_NONFATAL;
}
/* Note about the bit tests below: If a bit is zero, the GPIO is SPI. */
/* GPIO11/SPI_DO and GPIO12/SPI_DI status */
reg = pci_read_byte(smbus_dev, 0xAB);
reg &= 0xC0;
msg_pdbg("GPIO11 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_DO");
msg_pdbg("GPIO12 used for %s\n", (reg & (1 << 7)) ? "GPIO" : "SPI_DI");
if (reg != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
/* GPIO31/SPI_HOLD and GPIO32/SPI_CS status */
reg = pci_read_byte(smbus_dev, 0x83);
reg &= 0xC0;
msg_pdbg("GPIO31 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_HOLD");
msg_pdbg("GPIO32 used for %s\n", (reg & (1 << 7)) ? "GPIO" : "SPI_CS");
/* SPI_HOLD is not used on all boards, filter it out. */
if ((reg & 0x80) != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
/* GPIO47/SPI_CLK status */
reg = pci_read_byte(smbus_dev, 0xA7);
reg &= 0x40;
msg_pdbg("GPIO47 used for %s\n", (reg & (1 << 6)) ? "GPIO" : "SPI_CLK");
if (reg != 0x00) {
msg_pdbg("Not enabling SPI");
return 0;
}
if (handle_speed(dev) != 0)
return ERROR_FATAL;
#if 0
if (handle_imc(dev) != 0)
return ERROR_FATAL;
#endif
/* Starting with Yangtze the SPI controller got a different interface with a much bigger buffer. */
if (amd_gen != CHIPSET_YANGTZE)
register_spi_master(&spi_master_sb600);
else
register_spi_master(&spi_master_yangtze);
return 0;
}
#endif