-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_classes.py
305 lines (304 loc) · 10.3 KB
/
model_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
Model Classes
Peter Turney, July 5, 2019
"""
import golly as g
import model_parameters as mparam
import random as rand
import numpy as np
import copy
"""
Make a class for seeds.
"""
#
# Note: Golly locates cells by x (horizontal) and y (vertical) coordinates,
# usually given in the format (x, y). On the other hand, we are storing
# these cells in matrices, where the coordinates are usually given in the
# format [row][column], where row is a vertical coordinate and column
# is a horizontal coordinate. Although it may be somewhat confusing, we
# use [x][y] for our matrices (x = row index, y = column index). That is:
#
# self.xspan = self.cells.shape[0]
# self.yspan = self.cells.shape[1]
#
class Seed:
"""
A class for seeds.
"""
#
# __init__(self, xspan, yspan, pop_size) -- returns NULL
#
def __init__(self, xspan, yspan, pop_size):
"""
Make an empty seed (all zeros).
"""
# width of seed on the x-axis
self.xspan = xspan
# height of seed on the y-axis
self.yspan = yspan
# initial seed of zeros, to be modified later
self.cells = np.zeros((xspan, yspan), dtype=np.int)
# initial history of zeros
self.history = np.zeros(pop_size, dtype=np.float)
# initial similarities of zeros
self.similarities = np.zeros(pop_size, dtype=np.float)
# position of seed in the population array, to be modified later
self.address = 0
#
# randomize(self, seed_density) -- returns NULL
#
def randomize(self, seed_density):
"""
Randomly set some cells to state 1. It is assumed that the
cells in the given seed are initially all in state 0. The
result is a seed in which the fraction of cells in state 1
is approximately equal to seed_density (with some random
variation). Strictly speaking, seed_density is the
expected value of the fraction of cells in state 1.
"""
for x in range(self.xspan):
for y in range(self.yspan):
if (rand.random() <= seed_density):
self.cells[x][y] = 1
#
# shuffle(self) -- returns a shuffled copy of the given seed
#
def shuffle(self):
"""
Make a copy of the given seed and then shuffle the cells in
the seed. The new shuffled seed will have the same dimensions
and the same density of 1s and 0s as the given seed, but the
locations of the 1s and 0s will be different. (There is a very
small probability that shuffling might not result in any change,
just as shuffling a deck of cards might not change the deck.)
The density of shuffled_seed is exactly the same as the density
of the given seed.
"""
#
shuffled_seed = copy.deepcopy(self)
#
# for each location [x0][y0], randomly choose another location
# [x1][y1] and swap the values of the cells in the two locations.
#
for x0 in range(self.xspan):
for y0 in range(self.yspan):
x1 = rand.randrange(self.xspan)
y1 = rand.randrange(self.yspan)
temp = shuffled_seed.cells[x0][y0]
shuffled_seed.cells[x0][y0] = shuffled_seed.cells[x1][y1]
shuffled_seed.cells[x1][y1] = temp
#
return shuffled_seed
#
#
# red2blue(self) -- returns NULL
#
def red2blue(self):
"""
Switch cells from state 1 (red) to state 2 (blue).
"""
for x in range(self.xspan):
for y in range(self.yspan):
if (self.cells[x][y] == 1):
self.cells[x][y] = 2
#
# insert(self, g, g_xmin, g_xmax, g_ymin, g_ymax) -- returns NULL
#
def insert(self, g, g_xmin, g_xmax, g_ymin, g_ymax):
"""
Write the seed into the Golly grid at a random location
within the given bounds.
g = the Golly universe
s = a seed
"""
step = 1
g_xstart = rand.randrange(g_xmin, g_xmax - self.xspan, step)
g_ystart = rand.randrange(g_ymin, g_ymax - self.yspan, step)
for s_x in range(self.xspan):
for s_y in range(self.yspan):
g_x = g_xstart + s_x
g_y = g_ystart + s_y
s_state = self.cells[s_x][s_y]
g.setcell(g_x, g_y, s_state)
#
# random_rotate(self) -- returns new_seed
#
def random_rotate(self):
"""
Randomly rotate and flip the given seed and return a new seed.
"""
rotation = rand.randrange(0, 4, 1) # 0, 1, 2, 3
flip = rand.randrange(0, 2, 1) # 0, 1
new_seed = copy.deepcopy(self)
# rotate by 90 degrees * rotation (0, 90, 180 270)
new_seed.cells = np.rot90(new_seed.cells, rotation)
if (flip == 1):
# flip upside down
new_seed.cells = np.flipud(new_seed.cells)
new_seed.xspan = new_seed.cells.shape[0]
new_seed.yspan = new_seed.cells.shape[1]
return new_seed
#
# fitness(self) -- returns fitness
#
def fitness(self):
"""
Calculate a seed's fitness from its history.
"""
history = self.history
return sum(history) / len(history)
#
# mutate(self, prob_grow, prob_flip, prob_shrink, seed_density, mutation_rate)
# -- returns mutant
#
def mutate(self, prob_grow, prob_flip, prob_shrink, seed_density, mutation_rate):
"""
Make a copy of self and return a mutated version of the copy.
"""
#
mutant = copy.deepcopy(self)
#
# prob_grow = probability of invoking grow()
# prob_flip = probability of invoking flip_bits()
# prob_shrink = probability of invoking shrink()
# seed_density = target density of ones in an initial random seed
# mutation_rate = probability of flipping an individual bit
#
assert prob_grow + prob_flip + prob_shrink == 1.0
#
uniform_random = rand.uniform(0, 1)
#
if (uniform_random < prob_grow):
# this will be invoked with a probability of prob_grow
mutant.grow(seed_density)
elif (uniform_random < (prob_grow + prob_flip)):
# this will be invoked with a probability of prob_flip
mutant.flip_bits(mutation_rate)
else:
# this will be invoked with a probability of prob_shrink
mutant.shrink()
# erase the parent's history from the child
pop_size = len(self.history)
mutant.history = np.zeros(pop_size, dtype=np.float)
return mutant
#
# flip_bits(self, mutation_rate) -- returns NULL
#
def flip_bits(self, mutation_rate):
"""
Mutate a seed by randomly flipping bits. Assumes the seed
contains 0s and 1s.
"""
num_mutations = 0
for s_x in range(self.xspan):
for s_y in range(self.yspan):
if (rand.uniform(0, 1) < mutation_rate):
# flip cell value: 0 becomes 1 and 1 becomes 0
self.cells[s_x][s_y] = 1 - self.cells[s_x][s_y]
# count the number of mutations so far
num_mutations = num_mutations + 1
# force a minimum of one mutation -- there is no value
# in having duplicates in the population
if (num_mutations == 0):
s_x = rand.randrange(self.xspan)
s_y = rand.randrange(self.yspan)
self.cells[s_x][s_y] = 1 - self.cells[s_x][s_y]
#
# shrink(self) -- returns NULL
#
def shrink(self):
"""
Randomly remove rows or columns from a seed.
"""
# first we need to decide how to shrink
choice = rand.choice([0, 1, 2, 3])
# now do it
if ((choice == 0) and (self.xspan > mparam.min_s_xspan)):
# delete first row
self.cells = np.delete(self.cells, (0), axis=0)
elif ((choice == 1) and (self.xspan > mparam.min_s_xspan)):
# delete last row
self.cells = np.delete(self.cells, (-1), axis=0)
elif ((choice == 2) and (self.yspan > mparam.min_s_yspan)):
# delete first column
self.cells = np.delete(self.cells, (0), axis=1)
elif ((choice == 3) and (self.yspan > mparam.min_s_yspan)):
# delete last column
self.cells = np.delete(self.cells, (-1), axis=1)
# now let's update xspan and yspan to the new size
self.xspan = self.cells.shape[0]
self.yspan = self.cells.shape[1]
#
#
# grow(self, seed_density) -- returns NULL
#
def grow(self, seed_density):
"""
Randomly add or remove rows or columns from a seed. Assumes
the seed contains 0s and 1s.
"""
# - first we need to decide how to grow
choice = rand.choice([0, 1, 2, 3])
# - now do it
if (choice == 0):
# add a new row before the first row
self.cells = np.vstack([np.zeros(self.yspan, dtype=np.int), self.cells])
# initialize the new row with a density of approximately seed_density
for s_y in range(self.yspan):
if (rand.uniform(0, 1) < seed_density):
self.cells[0][s_y] = 1
#
elif (choice == 1):
# add a new row after the last row
self.cells = np.vstack([self.cells, np.zeros(self.yspan, dtype=np.int)])
# initialize the new row with a density of approximately seed_density
for s_y in range(self.yspan):
if (rand.uniform(0, 1) < seed_density):
self.cells[-1][s_y] = 1
#
elif (choice == 2):
# add a new column before the first column
self.cells = np.hstack([np.zeros((self.xspan, 1), dtype=np.int), self.cells])
# initialize the new column with a density of approximately seed_density
for s_x in range(self.xspan):
if (rand.uniform(0, 1) < seed_density):
self.cells[s_x][0] = 1
#
elif (choice == 3):
# add a new column after the last column
self.cells = np.hstack([self.cells, np.zeros((self.xspan, 1), dtype=np.int)])
# initialize the new column with a density of approximately seed_density
for s_x in range(self.xspan):
if (rand.uniform(0, 1) < seed_density):
self.cells[s_x][-1] = 1
#
#
# now let's update xspan and yspan to the new size
self.xspan = self.cells.shape[0]
self.yspan = self.cells.shape[1]
#
#
# count_ones(self) -- returns number of ones in a seed
#
def count_ones(self):
"""
Count the number of ones in a seed.
"""
count = 0
for x in range(self.xspan):
for y in range(self.yspan):
if (self.cells[x][y] == 1):
count = count + 1
return count
#
# density(self) -- returns density of ones in a seed
#
def density(self):
"""
Calculate the density of ones in a seed.
"""
return self.count_ones() / float(self.xspan * self.yspan)
#
#
#
#