-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvulcan_save_tri.py
292 lines (247 loc) · 9.59 KB
/
vulcan_save_tri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!python
# save a triangulation in vulcan format
# binary or ascii
'''
Copyright 2017 - 2021 Vale
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*** You can contribute to the main repository at: ***
https://github.com/pemn/usage-gui
---------------------------------
'''
import numpy as np
import pandas as pd
import os.path
import skimage.io
import re
#from scipy import ndimage as ndi
#from affine import Affine
def vulcan_save_asc(nodes, faces, output):
of = open(output, 'w')
for i in range(3):
print("%-24s" % "Created External", file=of)
print("No Points: %d, No Triangles: %d" % (len(nodes), len(faces)), file=of)
for n in nodes:
print("Vertex: %16.4f, %16.4f, %16.4f" % tuple(n), file=of)
for f in faces:
print("Index : %06d, %06d, %06d" % tuple(np.add(f,(1,1,1))), file=of)
def vulcan_save_tri(nodes, faces, output, colour = 1):
try:
import vulcan
except:
print("vulcan module not found. failed to save file:", output)
return
tri = vulcan.triangulation("", "w")
tri.set_colour(colour)
for k in nodes:
tri.add_node(*k)
for k in faces:
tri.add_face(*map(int, k))
tri.save(output)
# Vulcan Triangulation 00t
def vulcan_load_tri(df_path):
import vulcan
import pandas as pd
tri = vulcan.triangulation(df_path)
cv = tri.get_colour()
cn = 'colour'
if vulcan.version_major >= 11 and tri.is_rgb():
cv = pd.np.sum(pd.np.multiply(tri.get_rgb(), [2**16,2**8,1]))
cn = 'rgb'
nodes = [tri.get_node(_) for _ in range(tri.n_nodes())]
faces = [tri.get_face(_) for _ in range(tri.n_faces())]
return nodes, faces, cv, cn
# por each vertex, create a texture mapping node
def vulcan_texture_vt(cols, rows):
x_grid, y_grid = np.meshgrid(np.linspace(0, 1, rows), np.linspace(1, 0, cols))
return np.column_stack((x_grid.flat, y_grid.flat))
# save a triangulation as a Wavefront OBJ (obj, mtl, png)
def vulcan_save_obj(nodes, faces, texture, output_path, rows_cols = None):
# obj file
of = open(output_path, 'w')
output_mtl = os.path.splitext(output_path)[0] + '.mtl'
print("mtllib", output_mtl, file=of)
print("usemtl material0", file=of)
for n in nodes:
print("v %f %f %f" % tuple(n), file=of)
if rows_cols is not None:
for uv in vulcan_texture_vt(*rows_cols):
print("vt %f %f" % tuple(uv.tolist()), file=of)
for f in faces:
face1 = np.add(f,(1,1,1))
print("f %d/%d %d/%d %d/%d" % tuple(np.column_stack((face1, face1)).flat), file=of)
of.close()
# tif file
output_img = os.path.splitext(output_path)[0] + '.png'
skimage.io.imsave(output_img, texture)
# mtl file
of = open(output_mtl, 'w')
print("newmtl material0", file=of)
print("Ka %f %f %f" % (1.0, 1.0, 1.0), file=of)
print("Kd %f %f %f" % (1.0, 1.0, 1.0), file=of)
print("Ks %f %f %f" % (0.0, 0.0, 0.0), file=of)
print("map_Kd", output_img, file=of)
of.close()
def get_boilerplate_json(output_img, output_00t):
return {
"properties":
{
"bounding_level": 0.0,
"highlight_col": 65535,
"image": output_img,
"image_col": 16777215,
"scale": 1000.0,
"sharp_pixels": 1,
"triangulation": output_00t,
"tricol": 0,
"undercol": 16777215,
"use_bounding": 1,
"use_specified": 0,
"world_col": 16777215
}
}
def vulcan_register_image(output_00t, texture, xyz, output_path):
import json
output_img = os.path.splitext(output_path)[0] + '.png'
spec_json = get_boilerplate_json(output_img, output_00t)
skimage.io.imsave(output_img, texture)
spec_json["points"] = []
spec_json["points"].append({"image": [0,0,0],"world": xyz[0]})
spec_json["points"].append({"image": [1,0,0],"world": xyz[1]})
spec_json["points"].append({"image": [1,1,0],"world": xyz[2]})
spec_json["points"].append({"image": [0,1,0],"world": xyz[3]})
open(output_path, 'w').write(json.dumps(spec_json, sort_keys=True, indent=4).replace(': NaN', ' = u').replace('": ', '" = '))
# save a triangulation as a Vulcan IREG (ireg, 00t, png)
def vulcan_save_ireg(nodes, faces, texture, output_path, rows_cols = None):
import json
spec_json = get_boilerplate_json(output_img, output_00t)
output_00t = os.path.splitext(output_path)[0] + '.00t'
vulcan_save_tri(nodes, faces, output_00t)
output_img = os.path.splitext(output_path)[0] + '.png'
skimage.io.imsave(output_img, texture)
if rows_cols is not None:
vt = vulcan_texture_vt(*rows_cols)
spec_json["points"] = [{"image": vt[i].tolist(),"world": nodes[i].tolist()} for i in range(len(vt))]
open(output_path, 'w').write(json.dumps(spec_json, sort_keys=True, indent=4).replace(': NaN', ' = u').replace('": ', '" = '))
# 29193
def gdal_save_geotiff(texture, xyz, output_path, epsg = 29193):
import osgeo.gdal as gdal
import osgeo.osr as osr
driver = gdal.GetDriverByName("GTiff")
gdt = gdal.GDT_Byte
if str(texture.dtype).startswith('float'):
gdt = gdal.GDT_Float32
ds = driver.Create(output_path, texture.shape[2], texture.shape[1], texture.shape[0], gdt, options = ['PHOTOMETRIC=RGB'])
if xyz is not None:
srs = osr.SpatialReference()
srs.ImportFromEPSG(epsg)
gcps = []
gcps.append(gdal.GCP(xyz[0][0],xyz[0][1],xyz[0][2],0,0))
gcps.append(gdal.GCP(xyz[1][0],xyz[1][1],xyz[1][2],1,0))
gcps.append(gdal.GCP(xyz[2][0],xyz[2][1],xyz[2][2],1,1))
gcps.append(gdal.GCP(xyz[3][0],xyz[3][1],xyz[3][2],0,1))
ds.SetGCPs(gcps, srs.ExportToWkt())
for i in range(texture.shape[0]):
ds.GetRasterBand(i+1).WriteArray(texture[i])
ds.FlushCache()
def pd_load_geotiff(input_path):
''' create a standadized dataframe from a geotiff '''
import osgeo.gdal as gdal
import osgeo.osr as osr
import skimage.transform
idset = gdal.Open(input_path)
sr = idset.GetSpatialRef()
an = 'Authority'
ac = None
if sr:
print(sr.GetName())
an = sr.GetAuthorityName(None)
if not an:
an = 'EPSG'
ac = sr.GetAuthorityCode(None)
if ac:
ac = int(ac)
gt = idset.GetGeoTransform()
# ReadAsArray(self, xoff=0, yoff=0, xsize=None, ysize=None, buf_obj=None, buf_xsize=None, buf_ysize=None, buf_type=None, resample_alg=gdalconst.GRIORA_NearestNeighbour, callback=None, callback_data=None, interleave='band')
bd = idset.ReadAsArray(0, 0, idset.RasterXSize, idset.RasterYSize)
#bd = bd.astype(np.float)
vl = []
for i in range(idset.RasterCount):
vl.append(str(i))
# sometime gdal does not handle NoData corretly so we do it again anyway
nodata = idset.GetRasterBand(i+1).GetNoDataValue()
if nodata is None:
# nodata not defined
pass
elif str(bd.dtype).find('int') >= 0:
# int types do not support NaN
pass
elif bd.ndim == 2:
np.putmask(bd, bd == nodata, np.nan)
else:
np.putmask(bd[i], bd[i] == nodata, np.nan)
# channels
oa = None
n2d = np.prod(bd.shape[bd.ndim - 2:])
# single channel
if bd.ndim == 2:
oa = np.reshape(bd.T, (n2d, 1))
else:
oa = np.transpose(bd, (2,1,0)).reshape((n2d, bd.shape[0]))
affmat = np.array([[gt[1], gt[2], gt[0]], [gt[4], gt[5], gt[3]], [0.0,0.0,1.0]])
# xc, yc
vbi = np.indices((idset.RasterXSize, idset.RasterYSize))
vbi = np.moveaxis(vbi, 0, -1)
vbi = vbi.reshape(n2d, 2)
# x,y
vbp = skimage.transform.matrix_transform(vbi, affmat)
# epsg,x0,txx,txxy,y0,tyx,tyy
vbr = np.tile((ac,) + gt, (n2d,1))
vbv = np.concatenate((vbr, vbi, vbp, oa), 1)
return pd.DataFrame(vbv, columns=[an, 'x0', 'txx', 'txy', 'y0', 'tyx', 'tyy', 'xc', 'yc', 'x', 'y'] + vl)
def pd_save_geotiff(df, output_path):
import osgeo.gdal as gdal
import osgeo.osr as osr
driver = gdal.GetDriverByName("GTiff")
nx = int(df['xc'].max()) + 1
ny = int(df['yc'].max()) + 1
nc = sum(map(str.isnumeric, df.columns))
gdt = gdal.GDT_Byte
if re.search('float|object', str(df['0'].dtype)):
gdt = gdal.GDT_Float32
if nc <= 1:
nc = 1
ds = driver.Create(output_path, nx, ny, nc, gdt, options = ['PROFILE=GeoTIFF'])
else:
ds = driver.Create(output_path, nx, ny, nc, gdt, options = ['PROFILE=GeoTIFF', 'PHOTOMETRIC=RGB'])
an = df.columns[0]
ac = df.iloc[0, 0]
print("ac",ac)
if ac:
sr = osr.SpatialReference()
sr.SetFromUserInput("%s:%d" % (an, ac))
ds.SetSpatialRef(sr)
print(sr.GetName())
dscol = ['x0', 'txx', 'txy', 'y0', 'tyx', 'tyy']
# check if all required columns are in df
if set(dscol).issubset(df.columns):
ds.SetGeoTransform(df.iloc[0][dscol])
for i in range(ds.RasterCount):
ds.GetRasterBand(i+1).WriteArray(df[str(i)].values.reshape((nx,ny)).T)
ds.FlushCache()
def obj_mesh_to_ireg(od, output_img, output_path):
import json
output_00t = os.path.splitext(output_path)[0] + '.00t'
vulcan_save_tri(od.get('v'), od.get('f'), output_00t)
spec_json = get_boilerplate_json(output_img, output_00t)
nodes = od.get('v')
vt = od.get('vt')
spec_json["points"] = [{"image": vt[i],"world": nodes[i]} for i in range(len(vt))]
open(output_path, 'w').write(json.dumps(spec_json, sort_keys=True, indent=4).replace(': NaN', ' = u').replace('": ', '" = '))