forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_programming.cc
128 lines (107 loc) · 4.68 KB
/
linear_programming.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Linear programming example that shows how to use the API.
#include <cstdlib>
#include <string>
#include <vector>
#include "absl/flags/flag.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
#include "ortools/linear_solver/linear_solver.pb.h"
namespace operations_research {
void RunLinearProgrammingExample(absl::string_view solver_id) {
LOG(INFO) << "---- Linear programming example with " << solver_id << " ----";
MPSolver::OptimizationProblemType problem_type;
if (!MPSolver::ParseSolverType(solver_id, &problem_type)) {
LOG(INFO) << "Solver id " << solver_id << " not recognized";
return;
}
if (!MPSolver::SupportsProblemType(problem_type)) {
LOG(INFO) << "Supports for solver " << solver_id << " not linked in.";
return;
}
MPSolver solver("IntegerProgrammingExample", problem_type);
const double infinity = solver.infinity();
// x1, x2 and x3 are continuous non-negative variables.
MPVariable* const x1 = solver.MakeNumVar(0.0, infinity, "x1");
MPVariable* const x2 = solver.MakeNumVar(0.0, infinity, "x2");
MPVariable* const x3 = solver.MakeNumVar(0.0, infinity, "x3");
// Maximize 10 * x1 + 6 * x2 + 4 * x3.
MPObjective* const objective = solver.MutableObjective();
objective->SetCoefficient(x1, 10);
objective->SetCoefficient(x2, 6);
objective->SetCoefficient(x3, 4);
objective->SetMaximization();
// x1 + x2 + x3 <= 100.
MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 100.0);
c0->SetCoefficient(x1, 1);
c0->SetCoefficient(x2, 1);
c0->SetCoefficient(x3, 1);
// 10 * x1 + 4 * x2 + 5 * x3 <= 600.
MPConstraint* const c1 = solver.MakeRowConstraint(-infinity, 600.0);
c1->SetCoefficient(x1, 10);
c1->SetCoefficient(x2, 4);
c1->SetCoefficient(x3, 5);
// 2 * x1 + 2 * x2 + 6 * x3 <= 300.
MPConstraint* const c2 = solver.MakeRowConstraint(-infinity, 300.0);
c2->SetCoefficient(x1, 2);
c2->SetCoefficient(x2, 2);
c2->SetCoefficient(x3, 6);
// TODO(user): Change example to show = and >= constraints.
LOG(INFO) << "Number of variables = " << solver.NumVariables();
LOG(INFO) << "Number of constraints = " << solver.NumConstraints();
const MPSolver::ResultStatus result_status = solver.Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
LOG(FATAL) << "The problem does not have an optimal solution!";
}
LOG(INFO) << "Problem solved in " << solver.wall_time() << " milliseconds";
// The objective value of the solution.
LOG(INFO) << "Optimal objective value = " << objective->Value();
// The value of each variable in the solution.
LOG(INFO) << "x1 = " << x1->solution_value();
LOG(INFO) << "x2 = " << x2->solution_value();
LOG(INFO) << "x3 = " << x3->solution_value();
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations";
LOG(INFO) << "x1: reduced cost = " << x1->reduced_cost();
LOG(INFO) << "x2: reduced cost = " << x2->reduced_cost();
LOG(INFO) << "x3: reduced cost = " << x3->reduced_cost();
const std::vector<double> activities = solver.ComputeConstraintActivities();
LOG(INFO) << "c0: dual value = " << c0->dual_value()
<< " activity = " << activities[c0->index()];
LOG(INFO) << "c1: dual value = " << c1->dual_value()
<< " activity = " << activities[c1->index()];
LOG(INFO) << "c2: dual value = " << c2->dual_value()
<< " activity = " << activities[c2->index()];
}
void RunAllExamples() {
RunLinearProgrammingExample("GLOP");
RunLinearProgrammingExample("CLP");
RunLinearProgrammingExample("GUROBI_LP");
RunLinearProgrammingExample("CPLEX_LP");
RunLinearProgrammingExample("GLPK_LP");
RunLinearProgrammingExample("XPRESS_LP");
RunLinearProgrammingExample("PDLP");
}
} // namespace operations_research
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
absl::SetFlag(&FLAGS_stderrthreshold, 0);
operations_research::RunAllExamples();
return EXIT_SUCCESS;
}