forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nqueens.cc
284 lines (252 loc) · 9.23 KB
/
nqueens.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// N-queens problem
//
// unique solutions: http://www.research.att.com/~njas/sequences/A000170
// distinct solutions: http://www.research.att.com/~njas/sequences/A002562
#include <cstdint>
#include <cstdio>
#include <map>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
#include "ortools/constraint_solver/constraint_solveri.h"
ABSL_FLAG(bool, print, false, "If true, print one of the solution.");
ABSL_FLAG(bool, print_all, false, "If true, print all the solutions.");
ABSL_FLAG(int, nb_loops, 1,
"Number of solving loops to perform, for performance timing.");
ABSL_FLAG(
int, size, 0,
"Size of the problem. If equal to 0, will test several increasing sizes.");
ABSL_FLAG(bool, use_symmetry, false, "Use Symmetry Breaking methods");
ABSL_DECLARE_FLAG(bool, cp_disable_solve);
static const int kNumSolutions[] = {
1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184};
static const int kKnownSolutions = 15;
static const int kNumUniqueSolutions[] = {
1, 0, 0, 1, 2, 1, 6, 12, 46, 92,
341, 1787, 9233, 45752, 285053, 1846955, 11977939, 83263591, 621012754};
static const int kKnownUniqueSolutions = 19;
namespace operations_research {
class NQueenSymmetry : public SymmetryBreaker {
public:
NQueenSymmetry(Solver* const s, const std::vector<IntVar*>& vars)
: solver_(s), vars_(vars), size_(vars.size()) {
for (int i = 0; i < size_; ++i) {
indices_[vars[i]] = i;
}
}
~NQueenSymmetry() override {}
protected:
int Index(IntVar* const var) const {
return gtl::FindWithDefault(indices_, var, -1);
}
IntVar* Var(int index) const {
DCHECK_GE(index, 0);
DCHECK_LT(index, size_);
return vars_[index];
}
int size() const { return size_; }
int symmetric(int index) const { return size_ - 1 - index; }
Solver* const solver() const { return solver_; }
private:
Solver* const solver_;
const std::vector<IntVar*> vars_;
absl::flat_hash_map<const IntVar*, int> indices_;
const int size_;
};
// Symmetry vertical axis.
class SX : public NQueenSymmetry {
public:
SX(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~SX() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(symmetric(index));
AddIntegerVariableEqualValueClause(other_var, value);
}
};
// Symmetry horizontal axis.
class SY : public NQueenSymmetry {
public:
SY(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~SY() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
AddIntegerVariableEqualValueClause(var, symmetric(value));
}
};
// Symmetry first diagonal axis.
class SD1 : public NQueenSymmetry {
public:
SD1(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~SD1() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(value);
AddIntegerVariableEqualValueClause(other_var, index);
}
};
// Symmetry second diagonal axis.
class SD2 : public NQueenSymmetry {
public:
SD2(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~SD2() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(symmetric(value));
AddIntegerVariableEqualValueClause(other_var, symmetric(index));
}
};
// Rotate 1/4 turn.
class R90 : public NQueenSymmetry {
public:
R90(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~R90() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(value);
AddIntegerVariableEqualValueClause(other_var, symmetric(index));
}
};
// Rotate 1/2 turn.
class R180 : public NQueenSymmetry {
public:
R180(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~R180() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(symmetric(index));
AddIntegerVariableEqualValueClause(other_var, symmetric(value));
}
};
// Rotate 3/4 turn.
class R270 : public NQueenSymmetry {
public:
R270(Solver* const s, const std::vector<IntVar*>& vars)
: NQueenSymmetry(s, vars) {}
~R270() override {}
void VisitSetVariableValue(IntVar* const var, int64_t value) override {
const int index = Index(var);
IntVar* const other_var = Var(symmetric(value));
AddIntegerVariableEqualValueClause(other_var, index);
}
};
void CheckNumberOfSolutions(int size, int num_solutions) {
if (absl::GetFlag(FLAGS_use_symmetry)) {
if (size - 1 < kKnownUniqueSolutions) {
CHECK_EQ(num_solutions, kNumUniqueSolutions[size - 1]);
} else if (!absl::GetFlag(FLAGS_cp_disable_solve)) {
CHECK_GT(num_solutions, 0);
}
} else {
if (size - 1 < kKnownSolutions) {
CHECK_EQ(num_solutions, kNumSolutions[size - 1]);
} else if (!absl::GetFlag(FLAGS_cp_disable_solve)) {
CHECK_GT(num_solutions, 0);
}
}
}
void NQueens(int size) {
CHECK_GE(size, 1);
Solver s("nqueens");
// model
std::vector<IntVar*> queens;
for (int i = 0; i < size; ++i) {
queens.push_back(
s.MakeIntVar(0, size - 1, absl::StrFormat("queen%04d", i)));
}
s.AddConstraint(s.MakeAllDifferent(queens));
std::vector<IntVar*> vars(size);
for (int i = 0; i < size; ++i) {
vars[i] = s.MakeSum(queens[i], i)->Var();
}
s.AddConstraint(s.MakeAllDifferent(vars));
for (int i = 0; i < size; ++i) {
vars[i] = s.MakeSum(queens[i], -i)->Var();
}
s.AddConstraint(s.MakeAllDifferent(vars));
SolutionCollector* const solution_counter =
s.MakeAllSolutionCollector(nullptr);
SolutionCollector* const collector = s.MakeAllSolutionCollector();
collector->Add(queens);
std::vector<SearchMonitor*> monitors;
monitors.push_back(solution_counter);
monitors.push_back(collector);
DecisionBuilder* const db = s.MakePhase(queens, Solver::CHOOSE_FIRST_UNBOUND,
Solver::ASSIGN_MIN_VALUE);
if (absl::GetFlag(FLAGS_use_symmetry)) {
std::vector<SymmetryBreaker*> breakers;
NQueenSymmetry* const sx = s.RevAlloc(new SX(&s, queens));
breakers.push_back(sx);
NQueenSymmetry* const sy = s.RevAlloc(new SY(&s, queens));
breakers.push_back(sy);
NQueenSymmetry* const sd1 = s.RevAlloc(new SD1(&s, queens));
breakers.push_back(sd1);
NQueenSymmetry* const sd2 = s.RevAlloc(new SD2(&s, queens));
breakers.push_back(sd2);
NQueenSymmetry* const r90 = s.RevAlloc(new R90(&s, queens));
breakers.push_back(r90);
NQueenSymmetry* const r180 = s.RevAlloc(new R180(&s, queens));
breakers.push_back(r180);
NQueenSymmetry* const r270 = s.RevAlloc(new R270(&s, queens));
breakers.push_back(r270);
SearchMonitor* const symmetry_manager = s.MakeSymmetryManager(breakers);
monitors.push_back(symmetry_manager);
}
for (int loop = 0; loop < absl::GetFlag(FLAGS_nb_loops); ++loop) {
s.Solve(db, monitors); // go!
CheckNumberOfSolutions(size, solution_counter->solution_count());
}
const int num_solutions = solution_counter->solution_count();
if (num_solutions > 0 && size < kKnownSolutions) {
int print_max = absl::GetFlag(FLAGS_print_all) ? num_solutions
: absl::GetFlag(FLAGS_print) ? 1
: 0;
for (int n = 0; n < print_max; ++n) {
absl::PrintF("--- solution #%d\n", n);
for (int i = 0; i < size; ++i) {
const int pos = static_cast<int>(collector->Value(n, queens[i]));
for (int k = 0; k < pos; ++k) absl::PrintF(" . ");
absl::PrintF("%2d ", i);
for (int k = pos + 1; k < size; ++k) absl::PrintF(" . ");
absl::PrintF("\n");
}
}
}
absl::PrintF("========= number of solutions:%d\n", num_solutions);
absl::PrintF(" number of failures: %d\n", s.failures());
}
} // namespace operations_research
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
if (absl::GetFlag(FLAGS_size) != 0) {
operations_research::NQueens(absl::GetFlag(FLAGS_size));
} else {
for (int n = 1; n < 12; ++n) {
operations_research::NQueens(n);
}
}
return 0;
}