forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SimpleMinCostFlowProgram.cs
89 lines (81 loc) · 3.25 KB
/
SimpleMinCostFlowProgram.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// From Bradley, Hax, and Magnanti, 'Applied Mathematical Programming', figure 8.1.
// [START import]
using System;
using Google.OrTools.Graph;
// [END import]
public class SimpleMinCostFlowProgram
{
static void Main()
{
// [START solver]
// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();
// [END solver]
// [START data]
// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 15.
// Problem taken From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 };
int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 };
int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 };
int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 };
// Define an array of supplies at each node.
int[] supplies = { 20, 0, 0, -5, -15 };
// [END data]
// [START constraints]
// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
int arc =
minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
if (arc != i)
throw new Exception("Internal error");
}
// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
minCostFlow.SetNodeSupply(i, supplies[i]);
}
// [END constraints]
// [START solve]
// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();
// [END solve]
// [START print_solution]
if (status == MinCostFlow.Status.OPTIMAL)
{
Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost());
Console.WriteLine("");
Console.WriteLine(" Edge Flow / Capacity Cost");
for (int i = 0; i < minCostFlow.NumArcs(); ++i)
{
long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i);
Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + " " +
string.Format("{0,3}", minCostFlow.Flow(i)) + " / " +
string.Format("{0,3}", minCostFlow.Capacity(i)) + " " +
string.Format("{0,3}", cost));
}
}
else
{
Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + status);
}
// [END print_solution]
}
}
// [END program]