forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment_teams_mip.cc
156 lines (142 loc) · 4.46 KB
/
assignment_teams_mip.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// Solve a simple assignment problem.
// [START import]
#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
// [END import]
namespace operations_research {
void AssignmentTeamsMip() {
// Data
// [START data]
const std::vector<std::vector<int64_t>> costs = {{
{{90, 76, 75, 70}},
{{35, 85, 55, 65}},
{{125, 95, 90, 105}},
{{45, 110, 95, 115}},
{{60, 105, 80, 75}},
{{45, 65, 110, 95}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);
const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);
const std::vector<int64_t> team1 = {{0, 2, 4}};
const std::vector<int64_t> team2 = {{1, 3, 5}};
// Maximum total of tasks for any team
const int team_max = 2;
// [END data]
// Solver
// [START solver]
// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
LOG(WARNING) << "SCIP solver unavailable.";
return;
}
// [END solver]
// Variables
// [START variables]
// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
for (int task : all_tasks) {
x[worker][task] =
solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int worker : all_workers) {
LinearExpr worker_sum;
for (int task : all_tasks) {
worker_sum += x[worker][task];
}
solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
LinearExpr task_sum;
for (int worker : all_workers) {
task_sum += x[worker][task];
}
solver->MakeRowConstraint(task_sum == 1.0);
}
// Each team takes at most two tasks.
LinearExpr team1_tasks;
for (int worker : team1) {
for (int task : all_tasks) {
team1_tasks += x[worker][task];
}
}
solver->MakeRowConstraint(team1_tasks <= team_max);
LinearExpr team2_tasks;
for (int worker : team2) {
for (int task : all_tasks) {
team2_tasks += x[worker][task];
}
}
solver->MakeRowConstraint(team2_tasks <= team_max);
// [END constraints]
// Objective.
// [START objective]
MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
for (int task : all_tasks) {
objective->SetCoefficient(x[worker][task], costs[worker][task]);
}
}
objective->SetMinimization();
// [END objective]
// Solve
// [START solve]
const MPSolver::ResultStatus result_status = solver->Solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
result_status != MPSolver::FEASIBLE) {
LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
for (int task : all_tasks) {
// Test if x[i][j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[worker][task]->solution_value() > 0.5) {
LOG(INFO) << "Worker " << worker << " assigned to task " << task
<< ". Cost: " << costs[worker][task];
}
}
}
// [END print_solution]
}
} // namespace operations_research
int main(int argc, char** argv) {
operations_research::AssignmentTeamsMip();
return EXIT_SUCCESS;
}
// [END program]