forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mip_var_array.py
executable file
·106 lines (94 loc) · 3.4 KB
/
mip_var_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MIP example that uses a variable array."""
# [START program]
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
# [START program_part1]
# [START data_model]
def create_data_model():
"""Stores the data for the problem."""
data = {}
data['constraint_coeffs'] = [
[5, 7, 9, 2, 1],
[18, 4, -9, 10, 12],
[4, 7, 3, 8, 5],
[5, 13, 16, 3, -7],
]
data['bounds'] = [250, 285, 211, 315]
data['obj_coeffs'] = [7, 8, 2, 9, 6]
data['num_vars'] = 5
data['num_constraints'] = 4
return data
# [END data_model]
def main():
# [START data]
data = create_data_model()
# [END data]
# [END program_part1]
# [START solver]
# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver('SCIP')
if not solver:
return
# [END solver]
# [START program_part2]
# [START variables]
infinity = solver.infinity()
x = {}
for j in range(data['num_vars']):
x[j] = solver.IntVar(0, infinity, 'x[%i]' % j)
print('Number of variables =', solver.NumVariables())
# [END variables]
# [START constraints]
for i in range(data['num_constraints']):
constraint = solver.RowConstraint(0, data['bounds'][i], '')
for j in range(data['num_vars']):
constraint.SetCoefficient(x[j], data['constraint_coeffs'][i][j])
print('Number of constraints =', solver.NumConstraints())
# In Python, you can also set the constraints as follows.
# for i in range(data['num_constraints']):
# constraint_expr = \
# [data['constraint_coeffs'][i][j] * x[j] for j in range(data['num_vars'])]
# solver.Add(sum(constraint_expr) <= data['bounds'][i])
# [END constraints]
# [START objective]
objective = solver.Objective()
for j in range(data['num_vars']):
objective.SetCoefficient(x[j], data['obj_coeffs'][j])
objective.SetMaximization()
# In Python, you can also set the objective as follows.
# obj_expr = [data['obj_coeffs'][j] * x[j] for j in range(data['num_vars'])]
# solver.Maximize(solver.Sum(obj_expr))
# [END objective]
# [START solve]
status = solver.Solve()
# [END solve]
# [START print_solution]
if status == pywraplp.Solver.OPTIMAL:
print('Objective value =', solver.Objective().Value())
for j in range(data['num_vars']):
print(x[j].name(), ' = ', x[j].solution_value())
print()
print('Problem solved in %f milliseconds' % solver.wall_time())
print('Problem solved in %d iterations' % solver.iterations())
print('Problem solved in %d branch-and-bound nodes' % solver.nodes())
else:
print('The problem does not have an optimal solution.')
# [END print_solution]
if __name__ == '__main__':
main()
# [END program_part2]
# [END program]