forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparse.h
927 lines (806 loc) · 40.9 KB
/
sparse.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The following are very good references for terminology, data structures,
// and algorithms:
//
// I.S. Duff, A.M. Erisman and J.K. Reid, "Direct Methods for Sparse Matrices",
// Clarendon, Oxford, UK, 1987, ISBN 0-19-853421-3,
// http://www.amazon.com/dp/0198534213.
//
//
// T.A. Davis, "Direct methods for Sparse Linear Systems", SIAM, Philadelphia,
// 2006, ISBN-13: 978-0-898716-13, http://www.amazon.com/dp/0898716136.
//
//
// Both books also contain a wealth of references.
#ifndef OR_TOOLS_LP_DATA_SPARSE_H_
#define OR_TOOLS_LP_DATA_SPARSE_H_
#include <algorithm>
#include <cstdint>
#include <string>
#include <vector>
#include "ortools/base/integral_types.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/permutation.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse_column.h"
#include "ortools/util/return_macros.h"
namespace operations_research {
namespace glop {
class CompactSparseMatrixView;
// --------------------------------------------------------
// SparseMatrix
// --------------------------------------------------------
// SparseMatrix is a class for sparse matrices suitable for computation.
// Data is represented using the so-called compressed-column storage scheme.
// Entries (row, col, value) are stored by column using a SparseColumn.
//
// Citing [Duff et al, 1987], a matrix is sparse if many of its coefficients are
// zero and if there is an advantage in exploiting its zeros.
// For practical reasons, not all zeros are exploited (for example those that
// result from calculations.) The term entry refers to those coefficients that
// are handled explicitly. All non-zeros are entries while some zero
// coefficients may also be entries.
//
// Note that no special ordering of entries is assumed.
class SparseMatrix {
public:
SparseMatrix();
// Useful for testing. This makes it possible to write:
// SparseMatrix matrix {
// {1, 2, 3},
// {4, 5, 6},
// {7, 8, 9}};
#if (!defined(_MSC_VER) || _MSC_VER >= 1800)
SparseMatrix(
std::initializer_list<std::initializer_list<Fractional>> init_list);
#endif
// Clears internal data structure, i.e. erases all the columns and set
// the number of rows to zero.
void Clear();
// Returns true if the matrix is empty.
// That is if num_rows() OR num_cols() are zero.
bool IsEmpty() const;
// Cleans the columns, i.e. removes zero-values entries, removes duplicates
// entries and sorts remaining entries in increasing row order.
// Call with care: Runs in O(num_cols * column_cleanup), with each column
// cleanup running in O(num_entries * log(num_entries)).
void CleanUp();
// Call CheckNoDuplicates() on all columns, useful for doing a DCHECK.
bool CheckNoDuplicates() const;
// Call IsCleanedUp() on all columns, useful for doing a DCHECK.
bool IsCleanedUp() const;
// Change the number of row of this matrix.
void SetNumRows(RowIndex num_rows);
// Appends an empty column and returns its index.
ColIndex AppendEmptyColumn();
// Appends a unit vector defined by the single entry (row, value).
// Note that the row should be smaller than the number of rows of the matrix.
void AppendUnitVector(RowIndex row, Fractional value);
// Swaps the content of this SparseMatrix with the one passed as argument.
// Works in O(1).
void Swap(SparseMatrix* matrix);
// Populates the matrix with num_cols columns of zeros. As the number of rows
// is specified by num_rows, the matrix is not necessarily square.
// Previous columns/values are deleted.
void PopulateFromZero(RowIndex num_rows, ColIndex num_cols);
// Populates the matrix from the Identity matrix of size num_cols.
// Previous columns/values are deleted.
void PopulateFromIdentity(ColIndex num_cols);
// Populates the matrix from the transposed of the given matrix.
// Note that this preserve the property of lower/upper triangular matrix
// to have the diagonal coefficients first/last in each columns. It actually
// sorts the entries in each columns by their indices.
template <typename Matrix>
void PopulateFromTranspose(const Matrix& input);
// Populates a SparseMatrix from another one (copy), note that this run in
// O(number of entries in the matrix).
void PopulateFromSparseMatrix(const SparseMatrix& matrix);
// Populates a SparseMatrix from the image of a matrix A through the given
// row_perm and inverse_col_perm. See permutation.h for more details.
template <typename Matrix>
void PopulateFromPermutedMatrix(const Matrix& a,
const RowPermutation& row_perm,
const ColumnPermutation& inverse_col_perm);
// Populates a SparseMatrix from the result of alpha * A + beta * B,
// where alpha and beta are Fractionals, A and B are sparse matrices.
void PopulateFromLinearCombination(Fractional alpha, const SparseMatrix& a,
Fractional beta, const SparseMatrix& b);
// Multiplies SparseMatrix a by SparseMatrix b.
void PopulateFromProduct(const SparseMatrix& a, const SparseMatrix& b);
// Removes the marked columns from the matrix and adjust its size.
// This runs in O(num_cols).
void DeleteColumns(const DenseBooleanRow& columns_to_delete);
// Applies the given row permutation and deletes the rows for which
// permutation[row] is kInvalidRow. Sets the new number of rows to num_rows.
// This runs in O(num_entries).
void DeleteRows(RowIndex num_rows, const RowPermutation& permutation);
// Appends all rows from the given matrix to the calling object after the last
// row of the calling object. Both matrices must have the same number of
// columns. The method returns true if the rows were added successfully and
// false if it can't add the rows because the number of columns of the
// matrices are different.
bool AppendRowsFromSparseMatrix(const SparseMatrix& matrix);
// Applies the row permutation.
void ApplyRowPermutation(const RowPermutation& row_perm);
// Returns the coefficient at position row in column col.
// Call with care: runs in O(num_entries_in_col) as entries may not be sorted.
Fractional LookUpValue(RowIndex row, ColIndex col) const;
// Returns true if the matrix equals a (with a maximum error smaller than
// given the tolerance).
bool Equals(const SparseMatrix& a, Fractional tolerance) const;
// Returns, in min_magnitude and max_magnitude, the minimum and maximum
// magnitudes of the non-zero coefficients of the calling object.
void ComputeMinAndMaxMagnitudes(Fractional* min_magnitude,
Fractional* max_magnitude) const;
// Return the matrix dimension.
RowIndex num_rows() const { return num_rows_; }
ColIndex num_cols() const { return ColIndex(columns_.size()); }
// Access the underlying sparse columns.
const SparseColumn& column(ColIndex col) const { return columns_[col]; }
SparseColumn* mutable_column(ColIndex col) { return &(columns_[col]); }
// Returns the total numbers of entries in the matrix.
// Runs in O(num_cols).
EntryIndex num_entries() const;
// Computes the 1-norm of the matrix.
// The 1-norm |A| is defined as max_j sum_i |a_ij| or
// max_col sum_row |a(row,col)|.
Fractional ComputeOneNorm() const;
// Computes the oo-norm (infinity-norm) of the matrix.
// The oo-norm |A| is defined as max_i sum_j |a_ij| or
// max_row sum_col |a(row,col)|.
Fractional ComputeInfinityNorm() const;
// Returns a dense representation of the matrix.
std::string Dump() const;
private:
// Resets the internal data structure and create an empty rectangular
// matrix of size num_rows x num_cols.
void Reset(ColIndex num_cols, RowIndex num_rows);
// Vector of sparse columns.
StrictITIVector<ColIndex, SparseColumn> columns_;
// Number of rows. This is needed as sparse columns don't have a maximum
// number of rows.
RowIndex num_rows_;
DISALLOW_COPY_AND_ASSIGN(SparseMatrix);
};
// A matrix constructed from a list of already existing SparseColumn. This class
// does not take ownership of the underlying columns, and thus they must outlive
// this class (and keep the same address in memory).
class MatrixView {
public:
MatrixView() {}
explicit MatrixView(const SparseMatrix& matrix) {
PopulateFromMatrix(matrix);
}
// Takes all the columns of the given matrix.
void PopulateFromMatrix(const SparseMatrix& matrix) {
const ColIndex num_cols = matrix.num_cols();
columns_.resize(num_cols, nullptr);
for (ColIndex col(0); col < num_cols; ++col) {
columns_[col] = &matrix.column(col);
}
num_rows_ = matrix.num_rows();
}
// Takes all the columns of the first matrix followed by the columns of the
// second matrix.
void PopulateFromMatrixPair(const SparseMatrix& matrix_a,
const SparseMatrix& matrix_b) {
const ColIndex num_cols = matrix_a.num_cols() + matrix_b.num_cols();
columns_.resize(num_cols, nullptr);
for (ColIndex col(0); col < matrix_a.num_cols(); ++col) {
columns_[col] = &matrix_a.column(col);
}
for (ColIndex col(0); col < matrix_b.num_cols(); ++col) {
columns_[matrix_a.num_cols() + col] = &matrix_b.column(col);
}
num_rows_ = std::max(matrix_a.num_rows(), matrix_b.num_rows());
}
// Takes only the columns of the given matrix that belongs to the given basis.
void PopulateFromBasis(const MatrixView& matrix,
const RowToColMapping& basis) {
columns_.resize(RowToColIndex(basis.size()), nullptr);
for (RowIndex row(0); row < basis.size(); ++row) {
columns_[RowToColIndex(row)] = &matrix.column(basis[row]);
}
num_rows_ = matrix.num_rows();
}
// Same behavior as the SparseMatrix functions above.
bool IsEmpty() const { return columns_.empty(); }
RowIndex num_rows() const { return num_rows_; }
ColIndex num_cols() const { return columns_.size(); }
const SparseColumn& column(ColIndex col) const { return *columns_[col]; }
EntryIndex num_entries() const;
Fractional ComputeOneNorm() const;
Fractional ComputeInfinityNorm() const;
private:
RowIndex num_rows_;
StrictITIVector<ColIndex, SparseColumn const*> columns_;
};
extern template void SparseMatrix::PopulateFromTranspose<SparseMatrix>(
const SparseMatrix& input);
extern template void SparseMatrix::PopulateFromPermutedMatrix<SparseMatrix>(
const SparseMatrix& a, const RowPermutation& row_perm,
const ColumnPermutation& inverse_col_perm);
extern template void
SparseMatrix::PopulateFromPermutedMatrix<CompactSparseMatrixView>(
const CompactSparseMatrixView& a, const RowPermutation& row_perm,
const ColumnPermutation& inverse_col_perm);
// Another matrix representation which is more efficient than a SparseMatrix but
// doesn't allow matrix modification. It is faster to construct, uses less
// memory and provides a better cache locality when iterating over the non-zeros
// of the matrix columns.
class CompactSparseMatrix {
public:
// When iteration performance matter, getting a ConstView allows the compiler
// to do better aliasing analysis and not re-read vectors address all the
// time.
class ConstView {
public:
explicit ConstView(const CompactSparseMatrix* matrix)
: coefficients_(matrix->coefficients_.data()),
rows_(matrix->rows_.data()),
starts_(matrix->starts_.data()) {}
// Functions to iterate on the entries of a given column:
// const auto view = compact_matrix.view();
// for (const EntryIndex i : view.Column(col)) {
// const RowIndex row = view.EntryRow(i);
// const Fractional coefficient = view.EntryCoefficient(i);
// }
::util::IntegerRange<EntryIndex> Column(ColIndex col) const {
return ::util::IntegerRange<EntryIndex>(starts_[col.value()],
starts_[col.value() + 1]);
}
Fractional EntryCoefficient(EntryIndex i) const {
return coefficients_[i.value()];
}
RowIndex EntryRow(EntryIndex i) const { return rows_[i.value()]; }
EntryIndex ColumnNumEntries(ColIndex col) const {
return starts_[col.value() + 1] - starts_[col.value()];
}
// Returns the scalar product of the given row vector with the column of
// index col of this matrix.
Fractional ColumnScalarProduct(ColIndex col,
DenseRow::ConstView vector) const;
private:
const Fractional* const coefficients_;
const RowIndex* const rows_;
const EntryIndex* const starts_;
};
CompactSparseMatrix() {}
ConstView view() const { return ConstView(this); }
// Convenient constructors for tests.
// TODO(user): If this is needed in production code, it can be done faster.
explicit CompactSparseMatrix(const SparseMatrix& matrix) {
PopulateFromMatrixView(MatrixView(matrix));
}
// Creates a CompactSparseMatrix from the given MatrixView. The matrices are
// the same, only the representation differ. Note that the entry order in
// each column is preserved.
void PopulateFromMatrixView(const MatrixView& input);
// Creates a CompactSparseMatrix by copying the input and adding an identity
// matrix to the left of it.
void PopulateFromSparseMatrixAndAddSlacks(const SparseMatrix& input);
// Creates a CompactSparseMatrix from the transpose of the given
// CompactSparseMatrix. Note that the entries in each columns will be ordered
// by row indices.
void PopulateFromTranspose(const CompactSparseMatrix& input);
// Clears the matrix and sets its number of rows. If none of the Populate()
// function has been called, Reset() must be called before calling any of the
// Add*() functions below.
void Reset(RowIndex num_rows);
// Adds a dense column to the CompactSparseMatrix (only the non-zero will be
// actually stored). This work in O(input.size()) and returns the index of the
// added column.
ColIndex AddDenseColumn(const DenseColumn& dense_column);
// Same as AddDenseColumn(), but only adds the non-zero from the given start.
ColIndex AddDenseColumnPrefix(const DenseColumn& dense_column,
RowIndex start);
// Same as AddDenseColumn(), but uses the given non_zeros pattern of input.
// If non_zeros is empty, this actually calls AddDenseColumn().
ColIndex AddDenseColumnWithNonZeros(const DenseColumn& dense_column,
const std::vector<RowIndex>& non_zeros);
// Adds a dense column for which we know the non-zero positions and clears it.
// Note that this function supports duplicate indices in non_zeros. The
// complexity is in O(non_zeros.size()). Only the indices present in non_zeros
// will be cleared. Returns the index of the added column.
ColIndex AddAndClearColumnWithNonZeros(DenseColumn* column,
std::vector<RowIndex>* non_zeros);
// Returns the number of entries (i.e. degree) of the given column.
EntryIndex ColumnNumEntries(ColIndex col) const {
return starts_[col + 1] - starts_[col];
}
// Returns the matrix dimensions. See same functions in SparseMatrix.
EntryIndex num_entries() const {
DCHECK_EQ(coefficients_.size(), rows_.size());
return coefficients_.size();
}
RowIndex num_rows() const { return num_rows_; }
ColIndex num_cols() const { return num_cols_; }
// Returns whether or not this matrix contains any non-zero entries.
bool IsEmpty() const {
DCHECK_EQ(coefficients_.size(), rows_.size());
return coefficients_.empty();
}
// Alternative iteration API compatible with the one from SparseMatrix.
// The ConstView alternative should be faster.
ColumnView column(ColIndex col) const {
DCHECK_LT(col, num_cols_);
// Note that the start may be equal to row.size() if the last columns
// are empty, it is why we don't use &row[start].
const EntryIndex start = starts_[col];
return ColumnView(starts_[col + 1] - start, rows_.data() + start.value(),
coefficients_.data() + start.value());
}
// Returns true if the given column is empty. Note that for triangular matrix
// this does not include the diagonal coefficient (see below).
bool ColumnIsEmpty(ColIndex col) const {
return starts_[col + 1] == starts_[col];
}
// Returns the scalar product of the given row vector with the column of index
// col of this matrix.
Fractional ColumnScalarProduct(ColIndex col, const DenseRow& vector) const {
return view().ColumnScalarProduct(col, vector.const_view());
}
// Adds a multiple of the given column of this matrix to the given
// dense_column. If multiplier is 0.0, this function does nothing. This
// function is declared in the .h for efficiency.
void ColumnAddMultipleToDenseColumn(ColIndex col, Fractional multiplier,
DenseColumn* dense_column) const {
RETURN_IF_NULL(dense_column);
if (multiplier == 0.0) return;
const auto entry_rows = rows_.view();
const auto entry_coeffs = coefficients_.view();
for (const EntryIndex i : Column(col)) {
(*dense_column)[entry_rows[i]] += multiplier * entry_coeffs[i];
}
}
// Same as ColumnAddMultipleToDenseColumn() but also adds the new non-zeros to
// the non_zeros vector. A non-zero is "new" if is_non_zero[row] was false,
// and we update dense_column[row]. This function also updates is_non_zero.
void ColumnAddMultipleToSparseScatteredColumn(ColIndex col,
Fractional multiplier,
ScatteredColumn* column) const {
RETURN_IF_NULL(column);
if (multiplier == 0.0) return;
const auto entry_rows = rows_.view();
const auto entry_coeffs = coefficients_.view();
for (const EntryIndex i : Column(col)) {
column->Add(entry_rows[i], multiplier * entry_coeffs[i]);
}
}
// Copies the given column of this matrix into the given dense_column.
// This function is declared in the .h for efficiency.
void ColumnCopyToDenseColumn(ColIndex col, DenseColumn* dense_column) const {
RETURN_IF_NULL(dense_column);
dense_column->AssignToZero(num_rows_);
ColumnCopyToClearedDenseColumn(col, dense_column);
}
// Same as ColumnCopyToDenseColumn() but assumes the column to be initially
// all zero.
void ColumnCopyToClearedDenseColumn(ColIndex col,
DenseColumn* dense_column) const {
RETURN_IF_NULL(dense_column);
dense_column->resize(num_rows_, 0.0);
const auto entry_rows = rows_.view();
const auto entry_coeffs = coefficients_.view();
for (const EntryIndex i : Column(col)) {
(*dense_column)[entry_rows[i]] = entry_coeffs[i];
}
}
// Same as ColumnCopyToClearedDenseColumn() but also fills non_zeros.
void ColumnCopyToClearedDenseColumnWithNonZeros(
ColIndex col, DenseColumn* dense_column,
RowIndexVector* non_zeros) const {
RETURN_IF_NULL(dense_column);
dense_column->resize(num_rows_, 0.0);
non_zeros->clear();
const auto entry_rows = rows_.view();
const auto entry_coeffs = coefficients_.view();
for (const EntryIndex i : Column(col)) {
const RowIndex row = entry_rows[i];
(*dense_column)[row] = entry_coeffs[i];
non_zeros->push_back(row);
}
}
void Swap(CompactSparseMatrix* other);
protected:
// Functions to iterate on the entries of a given column.
::util::IntegerRange<EntryIndex> Column(ColIndex col) const {
return ::util::IntegerRange<EntryIndex>(starts_[col], starts_[col + 1]);
}
// The matrix dimensions, properly updated by full and incremental builders.
RowIndex num_rows_;
ColIndex num_cols_;
// Holds the columns non-zero coefficients and row positions.
// The entries for the column of index col are stored in the entries
// [starts_[col], starts_[col + 1]).
StrictITIVector<EntryIndex, Fractional> coefficients_;
StrictITIVector<EntryIndex, RowIndex> rows_;
StrictITIVector<ColIndex, EntryIndex> starts_;
private:
DISALLOW_COPY_AND_ASSIGN(CompactSparseMatrix);
};
inline Fractional CompactSparseMatrix::ConstView::ColumnScalarProduct(
ColIndex col, DenseRow::ConstView vector) const {
// We expand ourselves since we don't really care about the floating
// point order of operation and this seems faster.
int i = starts_[col.value()].value();
const int end = starts_[col.value() + 1].value();
const int shifted_end = end - 3;
Fractional result1 = 0.0;
Fractional result2 = 0.0;
Fractional result3 = 0.0;
Fractional result4 = 0.0;
for (; i < shifted_end; i += 4) {
result1 += coefficients_[i] * vector[RowToColIndex(rows_[i])];
result2 += coefficients_[i + 1] * vector[RowToColIndex(rows_[i + 1])];
result3 += coefficients_[i + 2] * vector[RowToColIndex(rows_[i + 2])];
result4 += coefficients_[i + 3] * vector[RowToColIndex(rows_[i + 3])];
}
Fractional result = result1 + result2 + result3 + result4;
if (i < end) {
result += coefficients_[i] * vector[RowToColIndex(rows_[i])];
if (i + 1 < end) {
result += coefficients_[i + 1] * vector[RowToColIndex(rows_[i + 1])];
if (i + 2 < end) {
result += coefficients_[i + 2] * vector[RowToColIndex(rows_[i + 2])];
}
}
}
return result;
}
// A matrix view of the basis columns of a CompactSparseMatrix, with basis
// specified as a RowToColMapping. This class does not take ownership of the
// underlying matrix or basis, and thus they must outlive this class (and keep
// the same address in memory).
class CompactSparseMatrixView {
public:
CompactSparseMatrixView(const CompactSparseMatrix* compact_matrix,
const RowToColMapping* basis)
: compact_matrix_(*compact_matrix),
columns_(basis->data(), basis->size().value()) {}
CompactSparseMatrixView(const CompactSparseMatrix* compact_matrix,
const std::vector<ColIndex>* columns)
: compact_matrix_(*compact_matrix), columns_(*columns) {}
// Same behavior as the SparseMatrix functions above.
bool IsEmpty() const { return compact_matrix_.IsEmpty(); }
RowIndex num_rows() const { return compact_matrix_.num_rows(); }
ColIndex num_cols() const { return ColIndex(columns_.size()); }
const ColumnView column(ColIndex col) const {
return compact_matrix_.column(columns_[col.value()]);
}
EntryIndex num_entries() const;
Fractional ComputeOneNorm() const;
Fractional ComputeInfinityNorm() const;
private:
// We require that the underlying CompactSparseMatrix and RowToColMapping
// continue to own the (potentially large) data accessed via this view.
const CompactSparseMatrix& compact_matrix_;
const absl::Span<const ColIndex> columns_;
};
// Specialization of a CompactSparseMatrix used for triangular matrices.
// To be able to solve triangular systems as efficiently as possible, the
// diagonal entries are stored in a separate vector and not in the underlying
// CompactSparseMatrix.
//
// Advanced usage: this class also support matrices that can be permuted into a
// triangular matrix and some functions work directly on such matrices.
class TriangularMatrix : private CompactSparseMatrix {
public:
TriangularMatrix() : all_diagonal_coefficients_are_one_(true) {}
// Only a subset of the functions from CompactSparseMatrix are exposed (note
// the private inheritance). They are extended to deal with diagonal
// coefficients properly.
void PopulateFromTranspose(const TriangularMatrix& input);
void Swap(TriangularMatrix* other);
bool IsEmpty() const { return diagonal_coefficients_.empty(); }
RowIndex num_rows() const { return num_rows_; }
ColIndex num_cols() const { return num_cols_; }
EntryIndex num_entries() const {
return EntryIndex(num_cols_.value()) + coefficients_.size();
}
// On top of the CompactSparseMatrix functionality, TriangularMatrix::Reset()
// also pre-allocates space of size col_size for a number of internal vectors.
// This helps reduce costly push_back operations for large problems.
//
// WARNING: Reset() must be called with a sufficiently large col_capacity
// prior to any Add* calls (e.g., AddTriangularColumn).
void Reset(RowIndex num_rows, ColIndex col_capacity);
// Constructs a triangular matrix from the given SparseMatrix. The input is
// assumed to be lower or upper triangular without any permutations. This is
// checked in debug mode.
void PopulateFromTriangularSparseMatrix(const SparseMatrix& input);
// Functions to create a triangular matrix incrementally, column by column.
// A client needs to call Reset(num_rows) first, and then each column must be
// added by calling one of the 3 functions below.
//
// Note that the row indices of the columns are allowed to be permuted: the
// diagonal entry of the column #col not being necessarily on the row #col.
// This is why these functions require the 'diagonal_row' parameter. The
// permutation can be fixed at the end by a call to
// ApplyRowPermutationToNonDiagonalEntries() or accounted directly in the case
// of PermutedLowerSparseSolve().
void AddTriangularColumn(const ColumnView& column, RowIndex diagonal_row);
void AddTriangularColumnWithGivenDiagonalEntry(const SparseColumn& column,
RowIndex diagonal_row,
Fractional diagonal_value);
void AddDiagonalOnlyColumn(Fractional diagonal_value);
// Adds the given sparse column divided by diagonal_coefficient.
// The diagonal_row is assumed to be present and its value should be the
// same as the one given in diagonal_coefficient. Note that this function
// tests for zero coefficients in the input column and removes them.
void AddAndNormalizeTriangularColumn(const SparseColumn& column,
RowIndex diagonal_row,
Fractional diagonal_coefficient);
// Applies the given row permutation to all entries except the diagonal ones.
void ApplyRowPermutationToNonDiagonalEntries(const RowPermutation& row_perm);
// Copy a triangular column with its diagonal entry to the given SparseColumn.
void CopyColumnToSparseColumn(ColIndex col, SparseColumn* output) const;
// Copy a triangular matrix to the given SparseMatrix.
void CopyToSparseMatrix(SparseMatrix* output) const;
// Returns the index of the first column which is not an identity column (i.e.
// a column j with only one entry of value 1 at the j-th row). This is always
// zero if the matrix is not triangular.
ColIndex GetFirstNonIdentityColumn() const {
return first_non_identity_column_;
}
// Returns the diagonal coefficient of the given column.
Fractional GetDiagonalCoefficient(ColIndex col) const {
return diagonal_coefficients_[col];
}
// Returns true iff the column contains no non-diagonal entries.
bool ColumnIsDiagonalOnly(ColIndex col) const {
return CompactSparseMatrix::ColumnIsEmpty(col);
}
// --------------------------------------------------------------------------
// Triangular solve functions.
//
// All the functions containing the word Lower (resp. Upper) require the
// matrix to be lower (resp. upper_) triangular without any permutation.
// --------------------------------------------------------------------------
// Solve the system L.x = rhs for a lower triangular matrix.
// The result overwrite rhs.
void LowerSolve(DenseColumn* rhs) const;
// Solves the system U.x = rhs for an upper triangular matrix.
void UpperSolve(DenseColumn* rhs) const;
// Solves the system Transpose(U).x = rhs where U is upper triangular.
// This can be used to do a left-solve for a row vector (i.e. y.Y = rhs).
void TransposeUpperSolve(DenseColumn* rhs) const;
// This assumes that the rhs is all zero before the given position.
void LowerSolveStartingAt(ColIndex start, DenseColumn* rhs) const;
// Solves the system Transpose(L).x = rhs, where L is lower triangular.
// This can be used to do a left-solve for a row vector (i.e., y.Y = rhs).
void TransposeLowerSolve(DenseColumn* rhs) const;
// Hyper-sparse version of the triangular solve functions. The passed
// non_zero_rows should contain the positions of the symbolic non-zeros of the
// result in the order in which they need to be accessed (or in the reverse
// order for the Reverse*() versions).
//
// The non-zero vector is mutable so that the symbolic non-zeros that are
// actually zero because of numerical cancellations can be removed.
//
// The non-zeros can be computed by one of these two methods:
// - ComputeRowsToConsiderWithDfs() which will give them in the reverse order
// of the one they need to be accessed in. This is only a topological order,
// and it will not necessarily be "sorted".
// - ComputeRowsToConsiderInSortedOrder() which will always give them in
// increasing order.
//
// Note that if the non-zeros are given in a sorted order, then the
// hyper-sparse functions will return EXACTLY the same results as the non
// hyper-sparse version above.
//
// For a given solve, here is the required order:
// - For a lower solve, increasing non-zeros order.
// - For an upper solve, decreasing non-zeros order.
// - for a transpose lower solve, decreasing non-zeros order.
// - for a transpose upper solve, increasing non_zeros order.
//
// For a general discussion of hyper-sparsity in LP, see:
// J.A.J. Hall, K.I.M. McKinnon, "Exploiting hyper-sparsity in the revised
// simplex method", December 1999, MS 99-014.
// http://www.maths.ed.ac.uk/hall/MS-99/MS9914.pdf
void HyperSparseSolve(DenseColumn* rhs, RowIndexVector* non_zero_rows) const;
void HyperSparseSolveWithReversedNonZeros(
DenseColumn* rhs, RowIndexVector* non_zero_rows) const;
void TransposeHyperSparseSolve(DenseColumn* rhs,
RowIndexVector* non_zero_rows) const;
void TransposeHyperSparseSolveWithReversedNonZeros(
DenseColumn* rhs, RowIndexVector* non_zero_rows) const;
// Given the positions of the non-zeros of a vector, computes the non-zero
// positions of the vector after a solve by this triangular matrix. The order
// of the returned non-zero positions will be in the REVERSE elimination
// order. If the function detects that there are too many non-zeros, then it
// aborts early and non_zero_rows is cleared.
void ComputeRowsToConsiderWithDfs(RowIndexVector* non_zero_rows) const;
// Same as TriangularComputeRowsToConsider() but always returns the non-zeros
// sorted by rows. It is up to the client to call the direct or reverse
// hyper-sparse solve function depending if the matrix is upper or lower
// triangular.
void ComputeRowsToConsiderInSortedOrder(RowIndexVector* non_zero_rows,
Fractional sparsity_ratio,
Fractional num_ops_ratio) const;
void ComputeRowsToConsiderInSortedOrder(RowIndexVector* non_zero_rows) const;
// This is currently only used for testing. It achieves the same result as
// PermutedLowerSparseSolve() below, but the latter exploits the sparsity of
// rhs and is thus faster for our use case.
//
// Note that partial_inverse_row_perm only permutes the first k rows, where k
// is the same as partial_inverse_row_perm.size(). It is the inverse
// permutation of row_perm which only permutes k rows into is [0, k), the
// other row images beeing kInvalidRow. The other arguments are the same as
// for PermutedLowerSparseSolve() and described there.
//
// IMPORTANT: lower will contain all the "symbolic" non-zero entries.
// A "symbolic" zero entry is one that will be zero whatever the coefficients
// of the rhs entries. That is it only depends on the position of its
// entries, not on their values. Thus, some of its coefficients may be zero.
// This fact is exploited by the LU factorization code. The zero coefficients
// of upper will be cleaned, however.
void PermutedLowerSolve(const SparseColumn& rhs,
const RowPermutation& row_perm,
const RowMapping& partial_inverse_row_perm,
SparseColumn* lower, SparseColumn* upper) const;
// This solves a lower triangular system with only ones on the diagonal where
// the matrix and the input rhs are permuted by the inverse of row_perm. Note
// that the output will also be permuted by the inverse of row_perm. The
// function also supports partial permutation. That is if row_perm[i] < 0 then
// column row_perm[i] is assumed to be an identity column.
//
// The output is given as follow:
// - lower is cleared, and receives the rows for which row_perm[row] < 0
// meaning not yet examined as a pivot (see markowitz.cc).
// - upper is NOT cleared, and the other rows (row_perm[row] >= 0) are
// appended to it.
// - Note that lower and upper can point to the same SparseColumn.
//
// Note: This function is non-const because ComputeRowsToConsider() also
// prunes the underlying dependency graph of the lower matrix while doing a
// solve. See marked_ and pruned_ends_ below.
void PermutedLowerSparseSolve(const ColumnView& rhs,
const RowPermutation& row_perm,
SparseColumn* lower, SparseColumn* upper);
// This is used to compute the deterministic time of a matrix factorization.
int64_t NumFpOperationsInLastPermutedLowerSparseSolve() const {
return num_fp_operations_;
}
// To be used in DEBUG mode by the client code. This check that the matrix is
// lower- (resp. upper-) triangular without any permutation and that there is
// no zero on the diagonal. We can't do that on each Solve() that require so,
// otherwise it will be too slow in debug.
bool IsLowerTriangular() const;
bool IsUpperTriangular() const;
// Visible for testing. This is used by PermutedLowerSparseSolve() to compute
// the non-zero indices of the result. The output is as follow:
// - lower_column_rows will contains the rows for which row_perm[row] < 0.
// - upper_column_rows will contains the other rows in the reverse topological
// order in which they should be considered in PermutedLowerSparseSolve().
//
// This function is non-const because it prunes the underlying dependency
// graph of the lower matrix while doing a solve. See marked_ and pruned_ends_
// below.
//
// Pruning the graph at the same time is slower but not by too much (< 2x) and
// seems worth doing. Note that when the lower matrix is dense, most of the
// graph will likely be pruned. As a result, the symbolic phase will be
// negligible compared to the numerical phase so we don't really need a dense
// version of PermutedLowerSparseSolve().
void PermutedComputeRowsToConsider(const ColumnView& rhs,
const RowPermutation& row_perm,
RowIndexVector* lower_column_rows,
RowIndexVector* upper_column_rows);
// The upper bound is computed using one of the algorithm presented in
// "A Survey of Condition Number Estimation for Triangular Matrices"
// https:epubs.siam.org/doi/pdf/10.1137/1029112/
Fractional ComputeInverseInfinityNormUpperBound() const;
Fractional ComputeInverseInfinityNorm() const;
private:
// Internal versions of some Solve() functions to avoid code duplication.
template <bool diagonal_of_ones>
void LowerSolveStartingAtInternal(ColIndex start,
DenseColumn::View rhs) const;
template <bool diagonal_of_ones>
void UpperSolveInternal(DenseColumn::View rhs) const;
template <bool diagonal_of_ones>
void TransposeLowerSolveInternal(DenseColumn::View rhs) const;
template <bool diagonal_of_ones>
void TransposeUpperSolveInternal(DenseColumn::View rhs) const;
template <bool diagonal_of_ones>
void HyperSparseSolveInternal(DenseColumn::View rhs,
RowIndexVector* non_zero_rows) const;
template <bool diagonal_of_ones>
void HyperSparseSolveWithReversedNonZerosInternal(
DenseColumn::View rhs, RowIndexVector* non_zero_rows) const;
template <bool diagonal_of_ones>
void TransposeHyperSparseSolveInternal(DenseColumn::View rhs,
RowIndexVector* non_zero_rows) const;
template <bool diagonal_of_ones>
void TransposeHyperSparseSolveWithReversedNonZerosInternal(
DenseColumn::View rhs, RowIndexVector* non_zero_rows) const;
// Internal function used by the Add*() functions to finish adding
// a new column to a triangular matrix.
void CloseCurrentColumn(Fractional diagonal_value);
// Extra data for "triangular" matrices. The diagonal coefficients are
// stored in a separate vector instead of beeing stored in each column.
StrictITIVector<ColIndex, Fractional> diagonal_coefficients_;
// Index of the first column which is not a diagonal only column with a
// coefficient of 1. This is used to optimize the solves.
ColIndex first_non_identity_column_;
// This common case allows for more efficient Solve() functions.
// TODO(user): Do not even construct diagonal_coefficients_ in this case?
bool all_diagonal_coefficients_are_one_;
// For the hyper-sparse version. These are used to implement a DFS, see
// TriangularComputeRowsToConsider() for more details.
mutable DenseBooleanColumn stored_;
mutable std::vector<RowIndex> nodes_to_explore_;
// For PermutedLowerSparseSolve().
int64_t num_fp_operations_;
mutable std::vector<RowIndex> lower_column_rows_;
mutable std::vector<RowIndex> upper_column_rows_;
mutable DenseColumn initially_all_zero_scratchpad_;
// This boolean vector is used to detect entries that can be pruned during
// the DFS used for the symbolic phase of ComputeRowsToConsider().
//
// Problem: We have a DAG where each node has outgoing arcs towards other
// nodes (this adjacency list is NOT sorted by any order). We want to compute
// the reachability of a set of nodes S and its topological order. While doing
// this, we also want to prune the adjacency lists to exploit the simple fact
// that if a -> (b, c) and b -> (c) then c can be removed from the adjacency
// list of a since it will be implied through b. Note that this doesn't change
// the reachability of any set nor a valid topological ordering of such a set.
//
// The concept is known as the transitive reduction of a DAG, see
// http://en.wikipedia.org/wiki/Transitive_reduction.
//
// Heuristic algorithm: While doing the DFS to compute Reach(S) and its
// topological order, each time we process a node, we mark all its adjacent
// node while going down in the DFS, and then we unmark all of them when we go
// back up. During the un-marking, if a node is already un-marked, it means
// that it was implied by some other path starting at the current node and we
// can prune it and remove it from the adjacency list of the current node.
//
// Note(user): I couldn't find any reference for this algorithm, even though
// I suspect I am not the first one to need something similar.
mutable DenseBooleanColumn marked_;
// This is used to represent a pruned sub-matrix of the current matrix that
// corresponds to the pruned DAG as described in the comment above for
// marked_. This vector is used to encode the sub-matrix as follow:
// - Both the rows and the coefficients of the pruned matrix are still stored
// in rows_ and coefficients_.
// - The data of column 'col' is still stored starting at starts_[col].
// - But, its end is given by pruned_ends_[col] instead of starts_[col + 1].
//
// The idea of using a smaller graph for the symbolic phase is well known in
// sparse linear algebra. See:
// - John R. Gilbert and Joseph W. H. Liu, "Elimination structures for
// unsymmetric sparse LU factors", Tech. Report CS-90-11. Departement of
// Computer Science, York University, North York. Ontario, Canada, 1990.
// - Stanley C. Eisenstat and Joseph W. H. Liu, "Exploiting structural
// symmetry in a sparse partial pivoting code". SIAM J. Sci. Comput. Vol
// 14, No 1, pp. 253-257, January 1993.
//
// Note that we use an original algorithm and prune the graph while performing
// the symbolic phase. Hence the pruning will only benefit the next symbolic
// phase. This is different from Eisenstat-Liu's symmetric pruning. It is
// still a heuristic and will not necessarily find the minimal graph that
// has the same result for the symbolic phase though.
//
// TODO(user): Use this during the "normal" hyper-sparse solves so that
// we can benefit from the pruned lower matrix there?
StrictITIVector<ColIndex, EntryIndex> pruned_ends_;
DISALLOW_COPY_AND_ASSIGN(TriangularMatrix);
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_SPARSE_H_