-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.h
230 lines (206 loc) · 6.14 KB
/
nn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#ifndef __NN_H_
#define __NN_H_
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include <utility>
using std::endl;
using std::pair;
using std::vector;
using std::ostringstream;
using std::string;
#define NN_OK 0
#define NN_ERR 1
#define DEFAULT_MIN_DELTA 1e-6
typedef enum {
SIGMOID,
RELU
} LayerType;
// A more cache-friendly version of a two-dimensional vector (it
// keeps all rows in the 2D structure closer together in memory.)
// Currently assumes the same dimension for every inner vector,
// so it's more like a matrix.
template <typename T>
class vector2d {
public:
vector<T> data;
size_t row_size, col_size;
vector2d<T>() { col_size = row_size = 0; }
vector2d<T>(int ic, int jc) { resize(ic, jc); }
void resize(size_t ic, size_t jc, T def) {
row_size = ic;
col_size = jc;
data.resize(ic * jc, def);
}
void resize(size_t ic, size_t jc) {
row_size = ic;
col_size = jc;
data.resize(ic * jc);
}
T& at(size_t i, size_t j) { return data[i * col_size + j]; }
const T& at(size_t i, size_t j) const {
return data[i * col_size + j];
}
};
// Result with derivatives for each input variable.
struct aResult {
float f;
float loss, dloss_df; // derivative w.r.t. activation
vector<float> dloss_dx; // derivative w.r.t. previous layer
aResult(int num_vars) { dloss_dx.resize(num_vars, 0.0); }
string toString() const {
std::ostringstream out;
out << "f: " << f << " loss: " << loss << " dloss/df: " <<
dloss_df << " grad (prev): ";
for (float val : dloss_dx) {
out << val << " ";
}
return out.str();
}
};
struct GDOptimizerParams {
float learning_rate;
};
struct TrainingReport {
vector<float> losses; // loss at each iteration
float timeElapsed; // total training time
string toString() {
ostringstream out;
out << "Training report: " << endl;
for (size_t i = 0; i < losses.size(); i++) {
out << " - iteration " << i << ": loss " << losses[i] << endl;
}
out << "--- training completed" << endl;
return out.str();
}
};
struct NNLayer {
vector2d<float> inWeights;
vector<float> bias;
void Init(unsigned int num_inputs, unsigned int num_outputs) {
inWeights.resize(num_outputs, num_inputs);
bias.resize(num_outputs);
}
virtual float activation(size_t unit,
const vector<float>& inputs) const = 0;
virtual void lossWithGradients(size_t unit,
const vector<float>& inputs,
const vector<aResult>* next_layer_loss,
const vector2d<float>* next_layer_weights,
float y, aResult* res) const = 0;
virtual int interpretOutput(float output) const = 0;
void updateWeights(const vector<aResult>& lossesAndGrads,
const GDOptimizerParams& opt_params);
string toString() const {
std::ostringstream out;
out << "wts: ";
for (size_t i = 0; i < inWeights.row_size; i++) {
out << "{";
for (size_t j = 0; j < inWeights.col_size; j++) {
out << inWeights.at(i, j) << (j == inWeights.col_size - 1 ?
"}" : ", ");
}
}
out << " bias: {";
for (size_t i = 0; i < bias.size(); i++) {
out << bias[i] << (i == bias.size() - 1 ?
"}" : ", ");
}
return out.str();
}
};
struct PReluNNLayer: public NNLayer {
float slope;
PReluNNLayer() {}
PReluNNLayer(unsigned int num_inputs, unsigned int num_outputs,
float sl) {
NNLayer::Init(num_inputs, num_outputs);
slope = sl;
}
float activation(size_t unit,
const vector<float>& inputs) const;
float activation(size_t unit,
const vector<float>& inputs,
bool* ignore) const;
void lossWithGradients(size_t unit,
const vector<float>& inputs,
const vector<aResult>* next_layer_loss,
const vector2d<float>* next_layer_weights,
float y, aResult* res) const;
int interpretOutput(float output) const;
};
struct SigmoidNNLayer: public NNLayer {
float threshold;
SigmoidNNLayer() {}
SigmoidNNLayer(unsigned int num_inputs,
unsigned int num_outputs,
float th=0.5) {
NNLayer::Init(num_inputs, num_outputs);
threshold = th;
}
float activation(size_t unit,
const vector<float>& inputs) const;
void lossWithGradients(size_t unit,
const vector<float>& inputs,
const vector<aResult>* next_layer_loss,
const vector2d<float>* next_layer_weights,
float y, aResult* res) const;
int interpretOutput(float output) const;
};
struct NNParams {
unsigned int numInputs;
unsigned int maxIterations;
float minDeltaSgd;
size_t patience;
unsigned int sgdBatchSize;
float learningRate;
NNParams(unsigned int numinputs,
unsigned int maxiter,
float mindeltasgd,
size_t patience,
unsigned int sgdbatchsize,
float learningrate) :
numInputs(numinputs),
maxIterations(maxiter),
minDeltaSgd(mindeltasgd),
patience(patience),
sgdBatchSize(sgdbatchsize),
learningRate(learningrate) {}
NNParams(const NNParams& p) :
NNParams(p.numInputs, p.maxIterations, p.minDeltaSgd,
p.patience, p.sgdBatchSize, p.learningRate) {}
};
class NN {
public:
vector<std::unique_ptr<NNLayer>> layers;
vector<pair<vector<float>, float>> examples;
std::unique_ptr<NNParams> params;
NN(const NNParams& nn_params) {
params.reset(new NNParams(nn_params));
}
bool addLayer(LayerType type, size_t num_units);
bool addOutputLayer(LayerType type);
void submitForAdd(const pair<vector<float>, float>& example);
float inference(const vector<float>& inputs,
vector<vector<float>>* outputs) const;
float inference(const vector<float>& inputs) const;
int lookup(const vector<float>& inputs) const;
bool train(TrainingReport* report);
void initializeWeights(float (*init)(size_t, size_t, size_t),
float( *init_bias)(size_t, size_t));
vector<vector<float>>* makeOutputVector() const;
string toString() const {
ostringstream out;
for (size_t i = 0; i < layers.size(); i++) {
out << "layer " << i << ": " <<
layers[i]->toString() << "\n";
}
return out.str();
}
bool trainingShouldStop(const TrainingReport* report) const;
float backpropagate(const vector<pair<vector<float>, float>>& examples,
const GDOptimizerParams& opt_params);
};
#endif