-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbehavioural_planner.py
832 lines (665 loc) · 36.2 KB
/
behavioural_planner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
#!/usr/bin/env python3
from turtle import color
import numpy as np
from shapely.geometry import Point, LineString, Polygon
from shapely.affinity import rotate, translate
from shapely.ops import unary_union, nearest_points
import matplotlib.pyplot as plt
import behaviourial_fsm
# Define x dimension of the bounding box to check for obstacles.
BB_PATH_LEFT = 1.5 # m
BB_PATH_RIGHT = 1.5 # m
BB_EXT_PATH_LEFT = 3.5 # m
BB_PEDESTRIAN_LEFT = 1.5 # m
BB_PEDESTRIAN_RIGHT = 1.5 # m
BB_EXT_PEDESTRIAN_LEFT = 5 # m
BB_EXT_PEDESTRIAN_RIGHT = 3.5 # m
# Obstacle extension
BB_OBSTACLE_EXTENSION = 0.25 # m
BB_REAL_OBSTACLE_EXTENSION = 0.55 # m
class BehaviouralPlanner:
def __init__(self, lookahead, lead_vehicle_lookahead, traffic_lights, vehicle, pedestrians):
self._fsm = behaviourial_fsm.get_fsm()
self._lookahead = lookahead
self._follow_lead_vehicle_lookahead = lead_vehicle_lookahead
self._state = self._fsm.get_current_state()
self._obstacles = []
self._lead_car_state = None
self._follow_lead_vehicle = False
self._obstacle_on_lane = False
self._goal_state = [0.0, 0.0, 0.0]
self._goal_index = 0
self._stop_count = 0
self._lookahead_collision_index = 0
self._waypoints = None
self._traffic_lights = traffic_lights
self._vehicle = vehicle
self._pedestrians = pedestrians
self._state_info = ''
self._current_input = ''
self._before_tl_present = False
self._before_vehicle_present = False
self._before_pedestrian_present = False
self._init_plot()
def _init_plot(self):
"""Initialize the environment to plot information in a live figure.
Note:
This method must be colled just once, before any call at _draw method. Otherwise Exception
will be rised in ythe runtime.
"""
self._fig = plt.figure('Geometry Help')
self._ax = self._fig.add_subplot(111)
self._fig.canvas.draw()
self._renderer = self._fig.canvas.renderer
self._legend = None
def _draw(self, geometry, short='-', **kargs):
"""Draw a geometry object in the figure spawned by the behavioural planner.
Note:
The geometry will be added in the plot after calling the method '_finalize_draw'. Also,
wher that was called, all the other geometry need to be re-added whit this function for the
next plot, if needed.
Args:
geometry (Point or LineString or Polygon): The geometry to print in the figure.
angle (float, default=0): the angle, in radians, which represents the direction of
the vehicle, to obtain a representation of the geometries always in the viewing direction.
short (str, default='-'): the first matplotlib argument to define a style.
**kargs: The matplotlib settings to associate at that geometry.
"""
geometry = rotate(geometry, (-self._ego_orientation + np.pi/2), (0,0), use_radians=True)
if type(geometry) == Point:
self._ax.plot(*geometry.coords.xy, short, **kargs)
elif type(geometry) == LineString:
self._ax.plot(*geometry.coords.xy, short, **kargs)
elif type(geometry) == Polygon:
self._ax.plot(*geometry.exterior.xy, short, **kargs)
def _finalize_draw(self):
"""This method shows everything passed to the _draw method in the figure.
Note:
When this method is called, the previous geometries in the image will continue to be displayed
but, if not re-inserted with the _draw method, they will no longer be displayed the next time
this method is used.
"""
self._fig.draw(self._renderer)
self._legend = self._fig.legend()
plt.pause(.001)
self._ax.cla()
if self._legend is not None:
self._legend.remove()
self._legend = None
self._ax.set_aspect('equal', 'datalim')
self._ax.invert_xaxis()
def set_lookahead(self, lookahead):
self._lookahead = lookahead
def get_waypoints(self):
return self._waypoints
def get_obstacles(self):
return self._obstacles
def set_traffic_light(self, traffic_lights):
"""Update the traffic light information. These are coming from Carla."""
for k in traffic_lights:
self._traffic_lights[k] = traffic_lights[k]
def set_vehicle(self, vehicle):
"""Update the other vehicle information. These are coming from Carla."""
for k in vehicle:
self._vehicle[k] = vehicle[k]
def set_pedestrians(self, pedestrians):
"""Update the pedestrian information. These are coming from Carla."""
for k in pedestrians:
self._pedestrians[k] = pedestrians[k]
def get_bp_info(self):
"""Return some string with information on the state of the FSM and useful
current input."""
return self._state_info, self._current_input
def set_real_pedestrians_cam0(self, pedestrians):
self._real_pedestrians_0 = pedestrians
def set_real_vehicles_cam0(self, vehicles):
self._real_vehicles_0 = vehicles
def set_real_pedestrians_cam1(self, pedestrians):
self._real_pedestrians_1 = pedestrians
def set_real_vehicles_cam1(self, vehicles):
self._real_vehicles_1 = vehicles
# Handles state transitions and computes the goal state.
# NOTE: Since the FSM was implemented with the FSM class, here we receive the input to
# the behavioural planner, we use the module ad described in the chaper 2.1 of the report
# and we use FSM.process() to evolve the FSM.
def transition_state(self, waypoints, ego_state, closed_loop_speed):
"""Handles state transitions and computes the goal state.
args:
waypoints: current waypoints to track (global frame).
length and speed in m and m/s.
(includes speed to track at each x,y location.)
format: [[x0, y0, v0],
[x1, y1, v1],
...
[xn, yn, vn]]
example:
waypoints[2][1]:
returns the 3rd waypoint's y position
waypoints[5]:
returns [x5, y5, v5] (6th waypoint)
ego_state: ego state vector for the vehicle. (global frame)
format: [ego_x, ego_y, ego_yaw, ego_open_loop_speed]
ego_x and ego_y : position (m)
ego_yaw : top-down orientation [-pi to pi]
ego_open_loop_speed : open loop speed (m/s)
closed_loop_speed: current (closed-loop) speed for vehicle (m/s)
variables to set:
self._goal_index: Goal index for the vehicle to reach
i.e. waypoints[self._goal_index] gives the goal waypoint
self._goal_state: Goal state for the vehicle to reach (global frame)
format: [x_goal, y_goal, v_goal]
self._state: The current state of the vehicle.
available states:
FOLLOW_LANE : Follow the global waypoints (lane).
DECELERATE_TO_STOP : Decelerate to stop.
STAY_STOPPED : Stay stopped.
self._stop_count: Counter used to count the number of cycles which
the vehicle was in the STAY_STOPPED state so far.
useful_constants:
STOP_THRESHOLD : Stop speed threshold (m). The vehicle should fully
stop when its speed falls within this threshold.
STOP_COUNTS : Number of cycles (simulation iterations)
before moving from stop sign.
"""
self._obstacles.clear()
self._waypoints = waypoints
# Update state info
self._state_info = f'Current State: {self._state}'
# Update input info
self._current_input = 'Current inputs:'
# ---------------- EGO STATE ---------------------------
# Transform ego info in shapely geometry
ego_point = Point(ego_state[0], ego_state[1])
ego_direction = ego_state[2]
self._ego_orientation = ego_direction
# Draw the ego state point.
self._draw(ego_point, 'g.', markersize=35, label='Ego Point')
# Update input info about trafficlights
self._current_input += f'\n - Ego state: Position={tuple((round(x, 1) for x in ego_point.coords[0]))}, Orientation={round(np.degrees(ego_direction))}°, Velocity={round(closed_loop_speed, 2)} m/s'
# ---------------- GOAL INDEX ---------------------------
# Get closest waypoint
_, closest_index = get_closest_index(waypoints, ego_point)
# Get goal based on the current lookahead
goal_index, goal_path = self.get_goal_index(waypoints, ego_point, closest_index)
self._draw(goal_path, 'y^-', markersize=10, label='Goal Path')
# Skip no moving goal to not remain stuck
while waypoints[goal_index][2] <= 0.1: goal_index += 1
# -------------- TRAFFIC LIGHTS --------------------------
# Check for traffic lights presence
traffic_light_presence, traffic_lights = self.check_for_traffic_lights(ego_point, goal_path)
# Draw all the traffic lights
for i, tl in enumerate([tl[3] for tl in traffic_lights]):
self._draw(tl, '-', markersize=10, color='#ff7878', label=f'Trafficlight {i}')
# Update input info about trafficlights
for i, tl in enumerate([tl for tl in traffic_lights]):
self._current_input += f'\n - Traffic lights {i}: ' + \
f'{"GREEN" if tl[1] == 0 else "YELLOW" if tl[1] == 1 else "RED"}, distance={round(tl[2], 2)} m'
# --------------- MATCHING REAL AND PERFECT DATA ----------------
self.map_real_to_perfect_data(ego_point)
# --------------- VEHICLES --------------------------------
# Check for vehicle presence
vehicle_presence, vehicles, veh_chech_area = self.check_for_vehicle(ego_point, goal_path)
# Draw all the found vehicle
for i, v in enumerate([v[4] for v in vehicles]):
self._draw(v, '--', color='#ff4d4d', label=f'Vehicle {i}')
# Draw the vehicle check area
self._draw(veh_chech_area, 'b--', label='Check vehicle area')
# Update input info about vehicles
for i, v in enumerate([v for v in vehicles]):
self._current_input += f'\n - Vehicle {i}: ' + \
f'Position={tuple((round(x, 1) for x in v[1][:2]))}, Speed={round(v[2], 2)} m/s, Distance={round(v[3], 2)} m'
# --------------- PEDESTRIANS ------------------------------
# Check for pedestrian presence
pedestrian_presence, pedestrians, ped_chech_area, ped_extended_area = self.check_for_pedestrians(ego_point, closed_loop_speed, goal_path)
# Draw all the found pedestrian
for i, p in enumerate(pedestrians):
self._draw(p[4], '--', color='#fc2626', label=f'Pedestrian {i}')
# Draw the pedestrian check area
self._draw(ped_chech_area, 'c:', label='Check pedestrian area')
self._draw(ped_extended_area, short='k:', label='Extended check pedestrian')
# Update input info about pedestrians
for i, p in enumerate([p for p in pedestrians]):
self._current_input += f'\n - Pedestrian {i}: ' + \
f'Position={tuple((round(x, 1) for x in p[1][:2]))}, Speed={round(p[2], 2)} m/s, Distance={round(p[3], 2)} m'
#####################
# for _, v in self._map_vehicles:
# self._draw(v, '.', color='#CC0000', markersize=20)
# for v in self._real_vehicles_0 + self._real_vehicles_1:
# self._draw(v, '.', color='#660000', markersize=15)
# for _, p in self._map_pedestrians:
# self._draw(p, '.', color='#3333FF', markersize=20)
# for p in self._real_pedestrians_0 + self._real_pedestrians_1:
# self._draw(p, '.', color='#330066', markersize=15)
# --------------- Update presence of obstacles -------------
self._before_pedestrian_present = pedestrian_presence
self._before_vehicle_present = vehicle_presence
self._before_tl_present = traffic_light_presence
# --------------- Update current input draw ----------------
self._finalize_draw()
# ------------- FSM EVOLUTION -------------------------------
# Set the input
self._fsm.set_readings(waypoints=waypoints,
ego_state=ego_state,
closed_loop_speed=closed_loop_speed,
goal_index=goal_index,
traffic_light_presence=traffic_light_presence,
traffic_lights=traffic_lights,
vehicle_presence=vehicle_presence,
vehicles=vehicles,
pedestrian_presence=pedestrian_presence,
pedestrians=pedestrians)
# Evolve the FSM
self._fsm.process()
# Get the current state
self._state = self._fsm.get_current_state()
# Get the output
self._goal_index = self._fsm.get_from_memory('goal_index')
self._goal_state = self._fsm.get_from_memory('goal_state')
self._follow_lead_vehicle = self._fsm.get_from_memory('follow_lead_vehicle')
self._lead_car_state = self._fsm.get_from_memory('lead_car_state')
# Gets the goal index in the list of waypoints, based on the lookahead and
# the current ego state. In particular, find the earliest waypoint that has accumulated
# arc length (including closest_len) that is greater than or equal to self._lookahead.
# NOTE: This is the implementation of "Path Analyzer" module described in the 2.1 chapter of the
# report.
def get_goal_index(self, waypoints, ego_point, closest_index):
"""Gets the goal index for the vehicle.
Set to be the earliest waypoint that has accumulated arc length
accumulated arc length (including closest_len) that is greater than or
equal to self._lookahead.
args:
waypoints: current waypoints to track. (global frame)
length and speed in m and m/s.
(includes speed to track at each x,y location.)
format: [[x0, y0, v0],
[x1, y1, v1],
...
[xn, yn, vn]]
example:
waypoints[2][1]:
returns the 3rd waypoint's y position
waypoints[5]:
returns [x5, y5, v5] (6th waypoint)
ego_point (Point): the point represent the position of the vehicle.
closest_index: index of the waypoint which is closest to the vehicle.
i.e. waypoints[closest_index] gives the waypoint closest to the vehicle.
returns:
wp_index: Goal index for the vehicle to reach
i.e. waypoints[wp_index] gives the goal waypoint
goal_line (LineString): a linestring representing the ideal path
"""
# list with all the points into the path
arc_points = [ego_point]
# Update lookahead if before something was present
lookahead = self._lookahead
if self._before_tl_present or self._before_vehicle_present or self._before_pedestrian_present:
lookahead += 15 # m of margin
is_after, _ = check_is_after(self._waypoints, ego_point, closest_index, margin=2.5)
if (closest_index != len(waypoints)-1) and is_after:
wp_index = closest_index + 1
else:
wp_index = closest_index
# We are already at the end of the path.
if wp_index == len(waypoints) - 1:
wp_point = Point(waypoints[wp_index][0], waypoints[wp_index][1])
arc_points.append(wp_point)
goal_index = wp_index
# Otherwise, find our next waypoint.
else:
arc_length = 0
wp_i1 = ego_point
while wp_index <= len(waypoints) - 1:
wp_i2 = Point(waypoints[wp_index][0], waypoints[wp_index][1])
arc_points.append(wp_i2)
arc_length += wp_i1.distance(wp_i2)
if arc_length > lookahead: break
wp_index += 1
goal_index = wp_index
# draw the arc_line
arc = LineString(arc_points)
return goal_index % len(waypoints), arc
# NOTE: This is the implementation of "Traffic Lights" module described in the 2.1 chapter of the
# report.
def check_for_traffic_lights(self, ego_point, goal_path):
"""Check in the path for presence of vehicle.
Args:
ego_point (Point): The point represent the position of the vehicle.
goal_path (LineString): The linestring represent the path until the goal.
Returns:
[intersection_flag, intersection]:
intersection_flag (bool): If true, at least one vehicle is present.
intersection (List[Tuple[int, int, float, LineString]]): a list containing, for each traffic light, the closest index,
the traffic light state, the distance from the traffic light, and the stop line of the traffic line."""
# Check for all traffic lights
intersection = []
for key, traffic_light_fence in enumerate(self._traffic_lights['fences']):
# Traffic Light segment
tl_line = LineString([traffic_light_fence[0:2], traffic_light_fence[2:4]])
# intersection between the Ideal path and the Traffic Light line.
intersection_flag = goal_path.intersects(tl_line)
# If there is an intersection with a stop line, update the goal state to stop before the goal line.
if intersection_flag:
intersection_point = Point(goal_path.intersection(tl_line).coords)
_, closest_index = get_closest_index(self._waypoints, intersection_point)
dist_from_tl = ego_point.distance(intersection_point)
traffic_light_state = self._traffic_lights['states'][key]
intersection.append([closest_index, traffic_light_state, dist_from_tl, tl_line])
# The trafficlight can be said to be present if there is at least one trafficlight in the area.
intersection_flag = len(intersection) > 0
# Order by distance
intersection = sorted(intersection, key=lambda x: x[3])
return intersection_flag, intersection
# NOTE: This is the implementation of "Vehicles" module described in the 2.1 chapter of the
# report.
def check_for_vehicle(self, ego_point, goal_path):
"""Check in the path for presence of vehicle.
Args:
ego_point (Point): The point represent the position of the vehicle.
goal_path (LineString): The linestring represent the path until the goal.
Returns:
[intersection_flag, intersection, path_bb]:
intersection_flag (bool): If true, at least one vehicle is present.
intersection (List[Tuple[int, Point, float, float, Polygon]]): a list containing, for each vehicle, the closest index,
the position point, the speed, the distance from the vehicle, and the bounding box of the vehicle.
path_bb (Polygon): the check area.
"""
# Default return parameter
intersection_flag = False
vehicle_position = None
vehicle_speed = 0
# Starting from the goal line, create an area to check for vehicle
path_bb = unary_union([goal_path.buffer(BB_PATH_RIGHT, single_sided=True), goal_path.buffer(-(BB_PATH_LEFT), single_sided=True)])
ext_path_bb = unary_union([goal_path.buffer(BB_PATH_RIGHT, single_sided=True), goal_path.buffer(-(BB_PATH_LEFT+BB_EXT_PATH_LEFT), single_sided=True)])
# Check all vehicles whose bounding box intersects the control area
intersection = []
# for key, vehicle_bb in enumerate(self._vehicle['fences']):
for key, vehicle_point in self._map_vehicles:
# vehicle = Polygon(vehicle_bb).buffer(BB_OBSTACLE_EXTENSION)
vehicle = vehicle_point.buffer(BB_REAL_OBSTACLE_EXTENSION)
if vehicle.intersects(path_bb):
# other_vehicle_point = Point(self._vehicle['position'][key][0], self._vehicle['position'][key][1])
other_vehicle_point = vehicle_point
_, closest_index = get_closest_index(self._waypoints, other_vehicle_point)
dist_from_vehicle = ego_point.distance(other_vehicle_point)
# Print untracked vehicle
if dist_from_vehicle > self._follow_lead_vehicle_lookahead:
pass
# self._draw(other_vehicle_point, 'm--')
else:
# Perfect draw
self._draw(Polygon(self._vehicle['fences'][key]), '--', color='#001a13')
# vehicle_position = self._vehicle['position'][key]
vehicle_position = [vehicle_point.x, vehicle_point.y]
vehicle_speed = self._vehicle['speeds'][key]
vehicle_nearest_point, _ = nearest_points(vehicle, ego_point)
# self._draw(vehicle_nearest_point, 'k.', markersize=15)
closest_index = self.get_stop_index(ego_point, vehicle_nearest_point)
intersection.append([closest_index, vehicle_position, vehicle_speed, dist_from_vehicle, vehicle])
elif vehicle.intersects(ext_path_bb):
# Perfect draw
self._draw(Polygon(self._vehicle['fences'][key]), '--', color='#001a13')
self._draw(vehicle, 'm-.')
# The lead vehicle can be said to be present if there is at least one vehicle in the area.
intersection_flag = len(intersection) > 0
# Sort the vehicle by their distance from ego
intersection = sorted(intersection, key=lambda x: x[3])
return intersection_flag, intersection, path_bb
# NOTE: This is the implementation of "Pedestrians" module described in the 2.1 chapter of the
# report.
def check_for_pedestrians(self, ego_point, ego_speed, goal_path):
"""Check in the path for presence of pedestrians.
Args:
ego_point (Point): The point represent the position of the vehicle.
ego_speed (float): The ego closed loop speed.
goal_path (LineString): The linestring represent the path until the goal.
Returns:
[intersection_flag, intersection, path_bb]:
intersection_flag (bool): If true, at least one pedestrian is present.
intersection (List[Tuple[int, Point, float, float, Polygon]]): a list containing, for each pedestrian, the closest index,
the position point, the speed, the distance from the pedestrian, and the bounding box of the pedestrian.
path_bb (Polygon): the check area.
"""
# Default return parameter
intersection_flag = False
pedestrian_position = None
pedestrian_speed = 0
# Starting from the goal line, create an area to check for vehicle. The area, in this case,
# was created as teh union of a little area on the right and a laregr area (to check pedestrian crossing).
# NOTE: The sign are inverted respect to the shapely documentation because shapely use a reverse x choords.
extended_path_bb = unary_union([goal_path.buffer(BB_PEDESTRIAN_RIGHT+BB_EXT_PEDESTRIAN_RIGHT, single_sided=True), goal_path.buffer(-(BB_PEDESTRIAN_LEFT+BB_EXT_PEDESTRIAN_LEFT), single_sided=True)])
path_bb = unary_union([goal_path.buffer(BB_PEDESTRIAN_RIGHT, single_sided=True), goal_path.buffer(-BB_PEDESTRIAN_LEFT, single_sided=True)])
# Check all pedestrians whose bounding box intersects the control area
intersection = []
# for key, pedestrian_bb in enumerate(self._pedestrians['fences']):
for key, pedestrian_point in self._map_pedestrians:
# pedestrian = Polygon(pedestrian_bb).buffer(BB_OBSTACLE_EXTENSION)
pedestrian = pedestrian_point.buffer(BB_REAL_OBSTACLE_EXTENSION)
if pedestrian.intersects(extended_path_bb):
# Perfect draw
self._draw(Polygon(self._pedestrians['fences'][key]), '--', color='#001a13')
# pedestrian_point = Point(self._pedestrians['position'][key][0], self._pedestrians['position'][key][1])
pedestrian_speed = self._pedestrians['speeds'][key]
# pedestrian_position = self._pedestrians['position'][key]
pedestrian_position = [pedestrian_point.x, pedestrian_point.y]
# Check if the pedestrian is in the middle of the road
pedestrian_in_road = pedestrian.intersects(path_bb)
# If the pedestrian is not in the road, chech if a pedestrian on the sidewalk is directed in the road.
if not pedestrian_in_road:
# Compute a segment who represent the direction of the pedestrian
pedestrian_orientation = self._pedestrians['orientations'][key]
pedestrian_proj = Point(pedestrian_point.x + 8 * np.cos(pedestrian_orientation),
pedestrian_point.y + 8 * np.sin(pedestrian_orientation))
pedestrian_path = LineString([pedestrian_point, pedestrian_proj])
# Draw the pedestrian and its probable path
self._draw(pedestrian, 'm:')
self._draw(pedestrian_path, 'm:')
# Check if the pedestrian path intersect the vehicle path
path_intersection = pedestrian_path.intersection(path_bb)
if len(path_intersection.coords) > 0:
# Compute in how time the car reach the path intersection (x2)
dist_from_intersection = ego_point.distance(Point(*path_intersection.coords[0]))
if ego_speed < 0.2:
time_to_dist = 1 # s
else:
time_to_dist = (dist_from_intersection / ego_speed) * 1.4
# Project the pedestrian on his path, at 0.5 second step, and check if the pedestrian is coming in the road,
# basing on it's velocity
ctime = 0
while ctime < time_to_dist:
pedestrian_distance = pedestrian_speed * ctime
pedestrian_proj = translate(pedestrian, pedestrian_distance * np.cos(pedestrian_orientation),
pedestrian_distance * np.sin(pedestrian_orientation), 0)
self._draw(pedestrian_proj, 'm:')
if pedestrian_proj.intersects(path_bb):
# Take the road point closest to the pedestrian
dist = - float('inf')
int_coords = pedestrian_position
for c in path_intersection.coords:
tmp_dist = pedestrian_point.distance(Point(c))
if tmp_dist < dist:
dist = tmp_dist
int_coords = c
pedestrian_position = int_coords
pedestrian_in_road = True
break
ctime += 0.5
# Get pedestrians info if one of the two cases.
if pedestrian_in_road:
pedestrian_nearest_point, _ = nearest_points(pedestrian, ego_point)
# self._draw(pedestrian_nearest_point, 'k.', markersize=15)
closest_index = self.get_stop_index(ego_point, pedestrian_nearest_point)
dist_from_pedestrian = ego_point.distance(pedestrian_point)
intersection.append([closest_index, pedestrian_position, pedestrian_speed, dist_from_pedestrian, pedestrian])
# A pedestrian can be said to be present if there is at least one vehicle in the area.
intersection_flag = len(intersection) > 0
# Sort the vehicle by their distance from ego
intersection = sorted(intersection, key=lambda x: x[3])
return intersection_flag, intersection, path_bb, extended_path_bb
# NOTE: case obstacle_index = 0 is not defined
def get_stop_index(self, ego_point, obstacle_point, margin=1):
"""
Find the stop index before an obstacle. If it doesn't exist add a waypoint to stop.
Args:
ego_point: the point of the vehicle
obstacle_point: the point of the obstacle
Returns:
stop_index: the index of the waypoint
"""
_, obstacle_index = get_closest_index(self._waypoints, obstacle_point)
_, ego_index = get_closest_index(self._waypoints, ego_point)
is_obstacle_before, obst_proj_point = check_is_before(self._waypoints, obstacle_point, obstacle_index)
is_ego_before_prev, ego_proj_point = check_is_before(self._waypoints, ego_point, obstacle_index-1)
if not is_obstacle_before:
stop_index = obstacle_index
else:
if is_ego_before_prev or (ego_index < obstacle_index-1):
stop_index = obstacle_index-1
else:
# If there's not enough space between the waypoints, don't add the waypoint
middle_point = LineString([ego_proj_point, obst_proj_point]).interpolate(0.4, normalized=True)
distance_from_closest, closest_index = get_closest_index(self._waypoints, middle_point)
if distance_from_closest > margin:
# Add new waypoint
wps = self._waypoints.tolist()
wps.insert(obstacle_index, [middle_point.x, middle_point.y, self._waypoints[obstacle_index][2]])
self._waypoints = np.array(wps)
stop_index = obstacle_index
else:
stop_index = closest_index
return stop_index
def map_real_to_perfect_data(self, ego_point):
"""Check for each real object from camera 0 and 1, the match with the
real data from Carla.
Note:
We managed the double detection from the two cameras of the same
object by keeping the closest point to the ego_point.
Args:
ego_point: the point of the vehicle
"""
map_vehicles = dict()
map_pedestrians = dict()
for v in self._real_vehicles_0:
key, _ = get_closest_object(v, self._vehicle['fences'])
map_vehicles[key] = v
for v in self._real_vehicles_1:
key, _ = get_closest_object(v, self._vehicle['fences'])
if key in map_vehicles:
dist0 = ego_point.distance(map_vehicles[key])
dist1 = ego_point.distance(v)
if dist1 < dist0:
map_vehicles[key] = v
else:
map_vehicles[key] = v
for p in self._real_pedestrians_0:
key, _ = get_closest_object(p, self._pedestrians['fences'])
map_pedestrians[key] = p
for p in self._real_pedestrians_1:
key, _ = get_closest_object(p, self._pedestrians['fences'])
if key in map_pedestrians:
dist0 = ego_point.distance(map_pedestrians[key])
dist1 = ego_point.distance(p)
if dist1 < dist0:
map_pedestrians[key] = p
else:
map_pedestrians[key] = p
self._map_vehicles = list(map_vehicles.items())
self._map_pedestrians = list(map_pedestrians.items())
def get_closest_object(obj_point, objects_list):
"""Get the closest geometric object from a list of objects.
Args:
obj_point: A shapely object geometry.
objects_list: A shapely object geometry list.
Returns:
min_index: index of the fences dictionary.
min_dist: distance from the two geometry. If it's inside, is 0.
"""
min_index = None
min_dist = float('inf')
for key, object_bb in enumerate(objects_list):
object_bb = Polygon(object_bb).buffer(BB_OBSTACLE_EXTENSION)
tmp_dist = obj_point.distance(object_bb)
if tmp_dist < min_dist:
min_dist = tmp_dist
min_index = key
return min_index, min_dist
def get_closest_index(waypoints, point):
"""Gets closest index a given list of waypoints to the point.
args:
waypoints: current waypoints to track. (global frame)
length and speed in m and m/s.
(includes speed to track at each x,y location.)
format: [[x0, y0, v0],
[x1, y1, v1],
...
[xn, yn, vn]]
example:
waypoints[2][1]:
returns the 3rd waypoint's y position
waypoints[5]:
returns [x5, y5, v5] (6th waypoint)
point (Point): position to see. (global frame)
returns:
[closest_len, closest_index]:
closest_len: length (m) to the closest waypoint from the vehicle.
closest_index: index of the waypoint which is closest to the vehicle.
i.e. waypoints[closest_index] gives the waypoint closest to the vehicle.
"""
closest_len = float('Inf')
closest_index = 0
for i in range(len(waypoints)):
wp_i = Point(waypoints[i][0], waypoints[i][1])
temp = point.distance(wp_i)
if temp < closest_len:
closest_len = temp
closest_index = i
return closest_len, closest_index
def check_is_after(waypoint,point, wp_index, margin=0):
"""Check if a point is after a waypoint.
Args:
waypoint: the waypoint
point: the point to check
wp_index: the waypoint index
Returns:
is_after: boolean which is true if the point is after
proj_point: the projected point used to make the check
"""
wp = Point(waypoint[wp_index][0:2])
if wp_index==0:
return True, wp
prev_wp = Point(waypoint[wp_index-1][0:2])
segment = LineString([prev_wp, wp])
proj_point = project_on_linestring(point, segment)
dist_wp_prev = wp.distance(prev_wp) - margin
dist_prev_proj = prev_wp.distance(proj_point)
return (dist_wp_prev <= dist_prev_proj), proj_point
def check_is_before(waypoint, point, wp_index, margin=0):
"""Check if a point is before a waypoint.
Args:
waypoint: the waypoint
point: the point to check
wp_index: the waypoint index
Returns:
is_before: boolean which is true if the point is before
proj_point: the projected point used to make the check
"""
is_before, proj_point = check_is_after(waypoint, point, wp_index, margin)
return not is_before, proj_point
def project_on_linestring(point, linestring):
"""Project point on the line identified by the linestring.
.. math::
cos(alpha) = (v - u).(x - u) / (|x - u|*|v - u|)
d = cos(alpha)*|x - u| = (v - u).(x - u) / |v - u|
P(x) = u + d*(v - u)/|v - u|
Args:
point: the point to project
linestring: the linestring
Return:
p: the projected point
"""
x = np.array(point.coords[0])
u = np.array(linestring.coords[0])
v = np.array(linestring.coords[len(linestring.coords)-1])
n = v - u
n /= np.linalg.norm(n, 2)
p = u + n*np.dot(x - u, n)
return Point(p)