-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathellipsefits_unittest.py
executable file
·312 lines (265 loc) · 12.9 KB
/
ellipsefits_unittest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python3
"""Unit test for ellipsefits.py"""
import unittest
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline as Interp
import ellipsefits_copy as ellipsefits # module to be tested
# prepare input and reference data
efitFileDir = '/Beleriand/data/sdss/n5831/'
efitFile_tdump = efitFileDir + "el_n5831rss_tdump.txt"
efitFile_fits = efitFileDir + "el_n5831rss.fits"
# Values for ellipse fits to NGC 5831 SDSS r-band image (sky-sub.),
# taken from the FITS-table version
n5831_startSma = np.array([1.0178389549255371, 1.0483740568161011, 1.0798252820968628,
1.1122200489044189, 1.1455866098403931])
n5831_endSma = np.array([190.48722839355469, 196.20184326171875, 202.087890625,
208.15052795410156, 214.39503479003906])
n5831_startPA_correct = np.array([100.83729553, 100.63247681, 100.54562378,
100.44206238, 100.08587646])
n5831_intens = np.array([9595.8203125, 9565.73046875, 9534.61621094, 9503.18066406,
9469.71386719])
n5831_flux = 100 * n5831_intens
# Assumed zero point = 26.2829
n5831_sb = np.array([16.327694, 16.331104, 16.334642, 16.338226, 16.342056])
# ellipticity, axis ratio, r_eq
n5831_startEll = np.array([0.2120698, 0.21750439999999999, 0.22277189999999999,
0.2284563, 0.2334621])
n5831_startq = np.array([0.7879302, 0.7824956, 0.7772280999999, 0.7715437, 0.76653789999999])
n5831_startReq = np.array([0.90348919010738549, 0.92737886451308393, 0.95197956250163829,
0.97694691320309268, 1.0029860506078907])
# interpolated intensity values
# intensity_spline = InterpolatedUnivariateSpline(self.n5831efit_fits['sma'],
# self.n5831efit_fits['intens'])
# correct = intensity_spline(r)
# Values for a = 85, 86, 87, 88, 89
n5831_interp = np.array([ 56.09949942, 54.91316007, 54.12624965, 53.47276029, 52.66247574])
class EllipseCircumCheck( unittest.TestCase ):
def testEllipseCircum( self ):
# circular case
correct = 2*np.pi
self.assertEqual(ellipsefits.EllipseCircum(1.0, 1.0), correct)
# elliptical case
a = 1.0
b = 0.5
self.assertEqual(4.8442241102738377, ellipsefits.EllipseCircum(a, b))
def testEllipseCircum_array( self ):
aa = np.array([1.0, 1.0, 1.0])
bb = np.array([1.0, 0.5, 0.1])
correct = [2*np.pi, 4.8442241102738377, 4.0639741801008959]
result = ellipsefits.EllipseCircum(aa, bb)
for i in range(3):
self.assertEqual(correct[i], result[i])
class EllipseRCheck( unittest.TestCase ):
def testEllipseR( self ):
# circular case
input = np.array([0.0, 45.0, 90.0, 135.0, 180.0])
correct = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
result = ellipsefits.EllipseR(1.0, 0.0, 0.0, input)
for i in range(5):
self.assertEqual(correct[i], result[i])
# ell = 0.5
correct = np.array([1.0, 0.6324555320336759, 0.5, 0.6324555320336759, 1.0])
result = ellipsefits.EllipseR(1.0, 0.5, 0.0, input)
for i in range(5):
self.assertEqual(correct[i], result[i])
# ell = 0.5, pa = 45
correct = np.array([0.6324555320336759, 1.0, 0.6324555320336759, 0.5, 0.6324555320336759])
result = ellipsefits.EllipseR(1.0, 0.5, 45.0, input)
for i in range(5):
self.assertEqual(correct[i], result[i])
# ell = 0.5, pa = 135
correct = np.array([0.6324555320336759, 0.5, 0.6324555320336759, 1.0, 0.6324555320336759])
result = ellipsefits.EllipseR(1.0, 0.5, 135.0, input)
for i in range(5):
self.assertEqual(correct[i], result[i])
# def CorrectPosAngle( posAngle, telescopePA=None, flipFlag=False, outputNP=False ):
class CorrectPACheck( unittest.TestCase ):
def testCorrectPA_basic( self ):
# single values check, telPA = 0
input = [-90.0, -45.0, -10.0, 0.0, 10.0, 45.0, 90.0]
correct = [90.0, 135.0, 170.0, 0.0, 10.0, 45.0, 90.0]
for i in range(len(input)):
self.assertEqual(correct[i], ellipsefits.CorrectPosAngle(input[i]))
def testCorrectPA_basic_array( self ):
# multiple values in numpy array, telPA = 0
input = np.array([-90.0, -45.0, -10.0, 0.0, 10.0, 45.0, 90.0])
correct = [90.0, 135.0, 170.0, 0.0, 10.0, 45.0, 90.0]
output = ellipsefits.CorrectPosAngle(input)
for i in range(len(input)):
self.assertEqual(correct[i], output[i])
# same, using a list as input
output = ellipsefits.CorrectPosAngle(list(input))
for i in range(len(input)):
self.assertEqual(correct[i], output[i])
def testCorrectPA_telPA( self ):
# correct multiple values with telescope PA = 10 specified
input = np.array([-90.0, -45.0, -10.0, 0.0, 10.0, 45.0, 90.0])
correct = [100.0, 145.0, 0.0, 10.0, 20.0, 55.0, 100.0]
output = ellipsefits.CorrectPosAngle(input, telescopePA=10)
for i in range(len(input)):
self.assertEqual(correct[i], output[i])
# correct multiple values with telescope PA = 270 specified
input = np.array([-90.0, -45.0, -10.0, 0.0, 10.0, 45.0, 90.0])
correct = [0.0, 45.0, 80.0, 90.0, 100.0, 135.0, 0.0]
output = ellipsefits.CorrectPosAngle(input, telescopePA=270)
for i in range(len(input)):
self.assertEqual(correct[i], output[i])
def testCorrectPA_flip( self ):
# correct for left-right image reflection (reflection about y axis)
input = np.array([-90.0, -45.0, -10.0, 0.0, 10.0, 45.0, 90.0])
correct = [90.0, 45.0, 10.0, 0.0, 170.0, 135.0, 90.0]
output = ellipsefits.CorrectPosAngle(input, flipFlag=True)
for i in range(len(input)):
self.assertEqual(correct[i], output[i])
class ReadEllipseCheck( unittest.TestCase ):
def setUp(self):
self.n5831efit_tdump = ellipsefits.ReadEllipse(efitFile_tdump)
self.n5831efit_fits = ellipsefits.ReadEllipse(efitFile_fits)
self.n5831efit_fits_arcsec = ellipsefits.ReadEllipse(efitFile_fits,pix=0.396)
self.n5831efit_fits_correctpa = ellipsefits.ReadEllipse(efitFile_fits,telPA=89.99)
self.n5831efit_fits_sb = ellipsefits.ReadEllipse(efitFile_fits, zp=26.2829,
fluxconv=100.0, fluxUnits='blah')
def testReadEllipse_SMA( self ):
# check tdump and FITS versions
# tdump output differs from FITS table values at few x 10^-7 level in
# relative terms
for i in range(5):
deltaRel = abs((n5831_startSma[i] - self.n5831efit_tdump['sma'][i]) /
n5831_startSma[i])
self.assertLess(deltaRel, 1e-6)
for i in range(-5,-1):
deltaRel = abs((n5831_endSma[i] - self.n5831efit_tdump['sma'][i]) /
n5831_endSma[i])
self.assertLess(deltaRel, 1e-6)
for i in range(5):
self.assertEqual(n5831_startSma[i], self.n5831efit_fits['sma'][i])
for i in range(-5,-1):
self.assertEqual(n5831_endSma[i], self.n5831efit_fits['sma'][i])
# check associated metatdata
correct = 'pixels'
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits.sma_units)
def testReadEllipse_SMA_arcsec( self ):
# test for semi-major-axis units with user-specified pixel scale
pixScale = 0.396
for i in range(5):
correctSma_arcsec = pixScale * n5831_startSma[i]
deltaRel = abs((correctSma_arcsec -
self.n5831efit_fits_arcsec['sma'][i]) / correctSma_arcsec)
self.assertLess(deltaRel, 1e-6)
# check associated metatdata
correct = 'arc sec'
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits_arcsec.sma_units)
correct = 0.396
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits_arcsec.units_per_pix)
def testReadEllipse_PA( self ):
# test for corrected PA values
for i in range(5):
deltaRel = abs((n5831_startPA_correct[i] -
self.n5831efit_fits_correctpa['pa'][i]) / n5831_startPA_correct[i])
self.assertLess(deltaRel, 1e-6)
def testReadEllipse_SB( self ):
"""Test that we convert intensities to mag/arcsec^2, given an input
zero point."""
# test for valid surface-brightness values
for i in range(5):
deltaRel = abs((n5831_sb[i] -
self.n5831efit_fits_sb['sb'][i]) / n5831_sb[i])
self.assertLess(deltaRel, 1e-6)
# check associated metatdata
correct = 26.2829
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits_sb.zp_sb)
def testReadEllipse_fluxconv( self ):
"""Test that we convert intensities to arbitrary fluxes, given an input
flux conversion factor."""
for i in range(5):
deltaRel = abs((n5831_flux[i] -
self.n5831efit_fits_sb['flux'][i]) / n5831_flux[i])
self.assertLess(deltaRel, 1e-6)
# check associated metatdata
correct = 100.0
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits_sb.fluxconv)
# check associated metatdata
correct = "blah"
# WARNING: NON-DICT ATTRIBUTE
self.assertEqual(correct, self.n5831efit_fits_sb.flux_units)
def testReadEllipse_Ell( self ):
"""Test that we correctly read in ellipticity values, and also that we
correctly convert these to q (= b/a) and r_eq values. """
# test for ellipticity values
for i in range(5):
deltaRel = abs((n5831_startEll[i] -
self.n5831efit_fits['ellip'][i]) / n5831_startEll[i])
self.assertLess(deltaRel, 1e-6)
# test for axis-ratio values
for i in range(5):
deltaRel = abs((n5831_startq[i] - self.n5831efit_fits['q'][i]) / n5831_startq[i])
self.assertLess(deltaRel, 1e-6)
# test for r_eq values
for i in range(5):
deltaRel = abs((n5831_startReq[i] - self.n5831efit_fits['r_eq'][i]) / n5831_startReq[i])
self.assertLess(deltaRel, 1e-6)
# def IntensityFromRadius( ellipseFit, radius, ZP=None ):
class IntensityFromRadiusCheck( unittest.TestCase ):
def setUp(self):
self.n5831efit_fits = ellipsefits.ReadEllipse(efitFile_fits)
self.n5831efit_fits_arcsec = ellipsefits.ReadEllipse(efitFile_fits,pix=0.396)
self.intensity_spline = Interp(self.n5831efit_fits['sma'],
self.n5831efit_fits['intens'])
def testSingleRadius( self ):
r = 1.0483740568161011
correct = 9565.73046875
result = ellipsefits.IntensityFromRadius(self.n5831efit_fits, r)
deltaRel = np.abs(result - correct)/correct
self.assertLess(deltaRel, 1e-8)
def testSingleRadius_interpolated( self ):
r = 1.5
correct = self.intensity_spline(r)
result = ellipsefits.IntensityFromRadius(self.n5831efit_fits, r)
deltaRel = np.abs(result - correct)/correct
self.assertLess(deltaRel, 1e-8)
def testMultiRadius_interpolated( self ):
aa = np.array([85.0, 86.0, 87.0, 88.0, 89])
result = ellipsefits.IntensityFromRadius(self.n5831efit_fits, aa)
for i in range(len(aa)):
deltaRel = np.abs(result[i] - n5831_interp[i])/n5831_interp[i]
self.assertLess(deltaRel, 1e-8)
class EquivRadiusCheck( unittest.TestCase ):
def setUp(self):
self.n5831efit_fits = ellipsefits.ReadEllipse(efitFile_fits)
def testSingleSMA( self ):
a = self.n5831efit_fits['sma']
q = self.n5831efit_fits['q']
b = q*a
r_eq_correct = np.sqrt(a*b)
result = ellipsefits.EquivRadius(self.n5831efit_fits)
deltaRel = np.abs(result - r_eq_correct) / r_eq_correct
for i in range(10):
self.assertLess(deltaRel[i], 1.0e-8)
for i in range(-10, 0):
self.assertLess(deltaRel[i], 1.0e-8)
#def ConvertHigherOrder_Iraf2Bender( a, ell, B_iraf, percentStyle=True ):
class BenderIRAFConversionScheck( unittest.TestCase ):
def testIRAF2Bedner( self ):
a = 10.0
ell = 0.5
B_4 = 0.05
correct = 3.5355339059327378
result = ellipsefits.ConvertHigherOrder_Iraf2Bender(a, ell, B_4)
deltaRel = np.abs(result - correct) / correct
self.assertLess(deltaRel, 1.0e-8)
def testIRAF2Bedner_roundtrip( self ):
a = 10.0
ell = 0.5
B_4 = 0.05
a_4 = ellipsefits.ConvertHigherOrder_Iraf2Bender(a, ell, B_4)
B_4_result = ellipsefits.ConvertHigherOrder_Bender2Iraf(a, ell, a_4)
deltaRel = np.abs(B_4_result - B_4) / B_4
self.assertLess(deltaRel, 1.0e-8)
if __name__ == "__main__":
print("** Unit tests for ellipsefits.py **")
unittest.main()