-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paths4gutils.py
executable file
·379 lines (319 loc) · 15 KB
/
s4gutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Miscellaneous code for analysis of S4G bar fractions
import copy
import math
import random
import numpy as np
random.seed()
# lower and upper bounds of 68.3% confidence interval:
ONESIGMA_LOWER = 0.1585
ONESIGMA_UPPER = 0.8415
def Read2ColumnProfile( fname ):
"""Read in the (first) two columns from a simple text file where the columns
are separated by whitespace and lines beginning with '#' are ignored.
Returns tuple of (x, y), where x and y are numpy 1D arrays corresponding to
the first and second column
"""
dlines = [line for line in open(fname) if len(line) > 1 and line[0] != "#"]
x = [float(line.split()[0]) for line in dlines]
y = [float(line.split()[1]) for line in dlines]
return np.array(x), np.array(y)
def dtomm( distanceMpc ):
"""Converts distance in Mpc to distance modulus (M - m, in magnitudes)
"""
five_logD = 5.0 * np.log10(distanceMpc)
return (25.0 + five_logD)
def HIMassToFlux( M_HI, dist_Mpc ):
"""Converts H I mass (in solar masses) to equivalent H I flux (in Jy km/s)
based on distance in Mpc. Equation originally from Giovanelli & Haynes
(1988, in Galactic and extragalactic radio astronomy (2nd edition), p.522),
based on Roberts (1975, n A. Sandage, M. Sandage, and J. Kristian (eds.),
Galaxies and the Universe. Chicago: University of Chicago Press; p. 309).
"""
return M_HI / (2.356e5 * dist_Mpc**2)
def GetRadialSampleFromSphere( rMin, rMax ):
"""Get radius sample from spherical Euclidean volume (or spherical shell) using
the discarding method: generate a random point within a cube of half-width = rMax;
discard and re-generate if radius to that point is outside [rMin, rMax]
"""
rMin2 = rMin*rMin
rMax2 = rMax*rMax
done = False
while not done:
x = random.uniform(-rMax, rMax)
y = random.uniform(-rMax, rMax)
z = random.uniform(-rMax, rMax)
r2 = x*x + y*y + z*z
if (r2 >= rMin2) and (r2 <= rMax2):
done = True
return math.sqrt(r2)
def ConfidenceInterval( vect ):
nVals = len(vect)
lower_ind = int(round(ONESIGMA_LOWER*nVals)) - 1
upper_ind = int(round(ONESIGMA_UPPER*nVals))
vect_sorted = copy.copy(vect)
vect_sorted.sort()
return (vect_sorted[lower_ind], vect_sorted[upper_ind])
def Binomial( n, n_tot, nsigma=1.0, conf_level=None, method="wilson" ):
"""Computes fraction (aka frequency or rate) of occurances p = (n/n_tot).
Also computes the lower and upper confidence limits using either the
Wilson (1927) or Agresti & Coull (1998) method (method="wilson" or method="agresti");
default is to use Wilson method.
Default is to calculate 68.26895% confidence limits (i.e., 1-sigma in the
Gaussian approximation).
Returns tuple of (p, sigma_minus, sigma_plus).
"""
p = (1.0 * n) / n_tot
q = 1.0 - p
if (conf_level is not None):
print("Alternate values of nsigma or conf_limit not yet supported!")
alpha = 1.0 - conf_level
# R code would be the following:
#z_alpha = qnorm(1.0 - alpha/2.0)
return None
else:
z_alpha = nsigma # e.g., z_alpha = nsigma = 1.0 for 68.26895% conf. limits
if (method == "wald"):
# Wald (aka asymptotic) method -- don't use except for testing purposes!
sigma_minus = sigma_plus = z_alpha * np.sqrt(p*q/n_tot)
else:
z_alpha2 = z_alpha**2
n_tot_mod = n_tot + z_alpha2
p_mod = (n + 0.5*z_alpha2) / n_tot_mod
if (method == "wilson"):
# Wilson (1927) method
sigma_mod = np.sqrt(z_alpha2 * n_tot * (p*q + z_alpha2/(4.0*n_tot))) / n_tot_mod
elif (method == "agresti"):
# Agresti=Coull method
sigma_mod = np.sqrt(z_alpha2 * p_mod * (1.0 - p_mod) / n_tot_mod)
else:
print("ERROR: method \"%s\" not implemented in Binomial!" % method)
return None
p_upper = p_mod + sigma_mod
p_lower = p_mod - sigma_mod
sigma_minus = p - p_lower
sigma_plus = p_upper - p
return (p, sigma_minus, sigma_plus)
# Various functions for estimating stellar masses from absolute magnitudes and color-based
# M/L values
def magratio( mag1, mag2, mag1_err=None, mag2_err=None ):
"""Calculates luminosity ratio given two magnitudes; optionally
computes the error on the ratio using standard error propagation
(only if at least one of the errors is given; if only one is given,
the other is assumed to be = 0)."""
diff = mag1 - mag2
lumRatio = 10.0**(-diff*0.4)
if (mag1_err is None) and (mag2_err is None):
return lumRatio
else:
if (mag1_err is None):
mag1_err = 0.0
elif (mag2_err is None):
mag2_err = 0.0
p1 = ln10*lumRatio*(-0.4) * mag1_err
p2 = ln10*lumRatio*(0.4) * mag2_err
lumRatio_err = math.sqrt(p1**2 + p2**2)
return (lumRatio, lumRatio_err)
# Solar absolute magnitudes from Table 1.2 of Sparke & Gallagher for U, from
# Bell & de Jong (2001) for Johnson B and V, Kron-Cousins R and I, and
# Johnson J, H, and K original sources: Cox 2000; Bessel 1979; Worthey 1994).
# Solar absolute magnitudes for SDSS ugriz (AB mag) are from Bell et al. (2003 ApJS 149: 289).
# Thus, filters are standard Johnson-Cousins UBVRIJHK + SDSS ugriz, with
# K = standard ("broad") K, *not* K_s.
# K_s value taken from Kormendy+10: "The 2MASS survey uses a Ks bandpass whose
# effective wavelength is ~ 2.16 microns (Carpenter 2001; Bessell 2005). Following
# the above papers, we assume that Ks = K - 0.044. Then the Ks-band absolute
# magnitude of the Sun is 3.29."
solarAbsMag = { "U": 5.62, "B": 5.47, "V": 4.82, "R": 4.46, "I": 4.14,
"J": 3.70, "H": 3.37, "K": 3.33, "u": 6.41, "g": 5.15,
"r": 4.67, "i": 4.56, "z": 4.53, "K_s": 3.29 }
def solarL( mag, filterName, mag_err=None, Ks=False ):
"""Takes an absolute magnitude and the corresponding bandpass, and
returns corresponding solar luminosities. Uses solar absolute magnitudes
from Table 1.2 of Sparke & Gallagher for U and from Bell & de Jong (2001,
ApJ 550: 212) for Johnson B and V, Kron-Cousins R and I, and Johnson J, H,
and K (original sources: Cox 2000; Bessel 1979; Worthey 1994). Solar absolute
magnitudes for SDSS ugriz are from Bell et al. (ApJS 149: 289).
Thus, filters are standard Johnson-Cousins UBVRIJHK + SDSS ugriz, with
K = standard ("broad") K, *not* K_s.
If Ks = True, then we substitute K_s for K
If mag_err is given, then the error on the luminosity is also computed,
using standard error propagattion [done in magratio() function], assuming
the solar absolute magnitude has no error."""
if (Ks is True) and (filterName == "K"):
filterName = "K_s"
try:
m_Sun = solarAbsMag[filterName]
except KeyError as e:
print(" solarL: unrecognized filter \"%s\"!" % filterName)
return 0
if (mag_err is None):
return magratio(mag, m_Sun)
else:
return magratio(mag, m_Sun, mag_err)
def MassToLight( band, colorType, color, err=None, mode="Bell" ):
"""Calculates stellar mass-to-light ratio for a specified band (one of
BVRIJHK), given a color index.
band = the desired band for the mass-to-light ratio (one of Johnson-Cousins
BVRIJHK [Vega magnitudes] or SDSS ugriz [AB magnitudes]).
colorType="B-V", "B-R", "V-I", "V-J", "V-H", or "V-K" for Johnson-Cousins
colors, or "u-g", "u-r", "u-i", "u-z", "g-r", "g-i", "g-z", "r-i", or "r-z"
for SDSS colors.
color = value of the specified color index.
Returns M/L (mass in solar masses / luminosity in solar luminosities).
If err != None, then the error in M/L is also returned (using the
dex value provided in err, which should be 0.1--0.2).
Based on Table 1 of Bell & de Jong (2001, ApJ 550: 212) and
Table 7 of Bell et al. (2003, ApJS 149: 289); note that B-V and B-R
values use Bell+2003, but other optical colors use Bell & de Jong.
Alternately, the fits in Zibetti+2009 (Table B1) can be used instead,
by specifying mode="Zibetti"
"""
# dictionaries indexed by colorType, holding sub-dictionaries with
# corresponding coefficients, indexed by band
coefficients_B = {}
# M/L ratios for Johnson-Cousin bands, from Bell et al. (2003) for B-V
# and B-R, and from Bell & de Jong (2001) for other colors:
coefficients_B['B-V'] = {'B': [-0.942, 1.737], 'V': [-0.628, 1.305],
'R': [-0.520, 1.094], 'I': [-0.399, 0.824], 'J': [-0.261, 0.433],
'H': [-0.209, 0.210], 'K': [-0.206, 0.135]}
coefficients_B['B-R'] = {'B': [-1.224, 1.251], 'V': [-0.916, 0.976],
'R': [-0.523, 0.683], 'I': [-0.405, 0.518], 'J': [-0.289, 0.297],
'H': [-0.262, 0.180], 'K': [-0.264, 0.138]}
coefficients_B['V-I'] = {'B': [-1.919, 2.214], 'V': [-1.476, 1.747],
'R': [-1.314, 1.528], 'I': [-1.204, 1.347], 'J': [-1.040, 0.987],
'H': [-1.030, 0.870], 'K': [-1.027, 0.800]}
coefficients_B['V-J'] = {'B': [-1.903, 1.138], 'V': [-1.477, 0.905],
'R': [-1.319, 0.794], 'I': [-1.209, 0.700], 'J': [-1.029, 0.505],
'H': [-1.014, 0.442], 'K': [-1.005, 0.402]}
coefficients_B['V-H'] = {'B': [-2.181, 0.978], 'V': [-1.700, 0.779],
'R': [-1.515, 0.684], 'I': [-1.383, 0.603], 'J': [-1.151, 0.434],
'H': [-1.120, 0.379], 'K': [-1.100, 0.345]}
coefficients_B['V-K'] = {'B': [-2.156, 0.895], 'V': [-1.683, 0.714],
'R': [-1.501, 0.627], 'I': [-1.370, 0.553], 'J': [-1.139, 0.396],
'H': [-1.108, 0.346], 'K': [-1.087, 0.314]}
# M/L ratios for SDSS + Johnson-Cousins NIR bands, from Bell et al. 2003:
coefficients_B['u-g'] = {'g': [-0.221, 0.485], 'r': [-0.099, 0.345],
'i': [-0.053, 0.268], 'z': [-0.105, 0.226], 'J': [-0.128, 0.169],
'H': [-0.209, 0.133], 'K': [-0.260, 0.123]}
coefficients_B['u-r'] = {'g': [-0.390, 0.417], 'r': [-0.223, 0.299],
'i': [-0.151, 0.233], 'z': [-0.178, 0.192], 'J': [-0.172, 0.138],
'H': [-0.237, 0.104], 'K': [-0.273, 0.091]}
coefficients_B['u-i'] = {'g': [-0.375, 0.359], 'r': [-0.212, 0.257],
'i': [-0.144, 0.201], 'z': [-0.171, 0.165], 'J': [-0.169, 0.119],
'H': [-0.233, 0.090], 'K': [-0.267, 0.077]}
coefficients_B['u-z'] = {'g': [-0.400, 0.332], 'r': [-0.232, 0.239],
'i': [-0.161, 0.187], 'z': [-0.179, 0.151], 'J': [-0.163, 0.105],
'H': [-0.205, 0.071], 'K': [-0.232, 0.056]}
coefficients_B['g-r'] = {'g': [-0.499, 1.519], 'r': [-0.306, 1.097],
'i': [-0.222, 0.864], 'z': [-0.223, 0.689], 'J': [-0.172, 0.444],
'H': [-0.189, 0.266], 'K': [-0.209, 0.197]}
coefficients_B['g-i'] = {'g': [-0.379, 0.914], 'r': [-0.220, 0.661],
'i': [-0.152, 0.518], 'z': [-0.175, 0.421], 'J': [-0.153, 0.283],
'H': [-0.186, 0.179], 'K': [-0.211, 0.137]}
coefficients_B['g-z'] = {'g': [-0.367, 0.698], 'r': [-0.215, 0.508],
'i': [-0.153, 0.402], 'z': [-0.171, 0.322], 'J': [-0.097, 0.175],
'H': [-0.117, 0.083], 'K': [-0.138, 0.047]}
coefficients_B['r-i'] = {'g': [-0.106, 1.982], 'r': [-0.022, 1.431],
'i': [0.006, 1.114], 'z': [-0.052, 0.923], 'J': [-0.079, 0.650],
'H': [-0.148, 0.437], 'K': [-0.186, 0.349]}
coefficients_B['r-z'] = {'g': [-0.124, 1.067], 'r': [-0.041, 0.780],
'i': [-0.018, 0.623], 'z': [-0.041, 0.463], 'J': [-0.011, 0.224],
'H': [-0.059, 0.076], 'K': [-0.092, 0.019]}
coefficients_Z = {}
# M/L ratios for SDSS colors + SDSS or JHK bands, from Zibetti+2009:
coefficients_Z['u-g'] = {'g': [-1.628, 1.360], 'r': [-1.319, 1.093],
'i': [-1.277, 0.980], 'z': [-1.315, 0.913], 'J': [-1.350, 0.804],
'H': [-1.467, 0.750], 'K': [-1.578, 0.739]}
coefficients_Z['u-r'] = {'g': [-1.427, 0.835], 'r': [-1.157, 0.672],
'i': [-1.130, 0.602], 'z': [-1.181, 0.561], 'J': [-1.235, 0.495],
'H': [-1.361, 0.463], 'K': [-1.471, 0.455]}
coefficients_Z['u-i'] = {'g': [-1.468, 0.716], 'r': [-1.193, 0.577],
'i': [-1.160, 0.517], 'z': [-1.206, 0.481], 'J': [-1.256, 0.422],
'H': [-1.374, 0.393], 'K': [-1.477, 0.384]}
coefficients_Z['u-z'] = {'g': [-1.559, 0.658], 'r': [-1.268, 0.531],
'i': [-1.225, 0.474], 'z': [-1.260, 0.439], 'J': [-1.297, 0.383],
'H': [-1.407, 0.355], 'K': [-1.501, 0.344]}
coefficients_Z['g-r'] = {'g': [-1.030, 2.053], 'r': [-0.840, 1.654],
'i': [-0.845, 1.481], 'z': [-0.914, 1.382], 'J': [-1.007, 1.225],
'H': [-1.147, 1.144], 'K': [-1.257, 1.119]}
coefficients_Z['g-i'] = {'g': [-1.197, 1.431], 'r': [-0.977, 1.157],
'i': [-0.963, 1.032], 'z': [-1.019, 0.955], 'J': [-1.098, 0.844],
'H': [-1.222, 0.780], 'K': [-1.321, 0.754]}
coefficients_Z['g-z'] = {'g': [-1.370, 1.190], 'r': [-1.122, 0.965],
'i': [-1.089, 0.858], 'z': [-1.129, 0.791], 'J': [-1.183, 0.689],
'H': [-1.291, 0.632], 'K': [-1.379, 0.604]}
coefficients_Z['r-i'] = {'g': [-1.405, 4.280], 'r': [-1.155, 3.482],
'i': [-1.114, 3.087], 'z': [-1.145, 2.828], 'J': [-1.199, 2.467],
'H': [-1.296, 2.234], 'K': [-1.371, 2.109]}
coefficients_Z['r-z'] = {'g': [-1.576, 2.490], 'r': [-1.298, 2.032],
'i': [-1.238, 1.797], 'z': [-1.250, 1.635], 'J': [-1.271, 1.398],
'H': [-1.347, 1.247], 'K': [-1.405, 1.157]}
# M/L ratios for Johnson-Cousin colors and bands
coefficients_Z['B-V'] = {'B': [-1.330, 2.237], 'V': [-1.075, 1.837],
'R': [-0.989, 1.620], 'I': [-1.003, 1.475], 'J': [-1.135, 1.267],
'H': [-1.274, 1.190], 'K': [-1.390, 1.176]}
coefficients_Z['B-R'] = {'B': [-1.614, 1.466], 'V': [-1.314, 1.208],
'R': [-1.200, 1.066], 'I': [-1.192, 0.967], 'J': [-1.289, 0.822],
'H': [-1.410, 0.768], 'K': [-1.513, 0.750]}
if (mode == "Bell"):
coefficients = coefficients_B
elif (mode == "Zibetti"):
coefficients = coefficients_Z
else:
print("\n*** bad mode (\"%s\") selected in MassToLight! *** \n" % mode)
return None
try:
a = coefficients[colorType][band][0]
b = coefficients[colorType][band][1]
except KeyError as err:
txt = "\n*** %s is not an allowed color or band (or color/band combination) for %s et al. mass ratios! ***\n" % (err, mode)
txt += " (MassToLight called with colorType = '%s', band = '%s')\n" % (colorType, band)
print(txt)
return None
logML = a + b*color
if err is None:
return 10**logML
else:
MtoL = 10**logML
sigma_MtoL = ln10*err*MtoL
return (MtoL, sigma_MtoL)
def AbsMagToStellarMass( absMag, band, colorType="B-V", color=None, mag_err=None,
MtoL_err=0.1, mode="Bell", MtoL=None ):
"""Calculates a galaxy's stellar mass (in solar masses) given as input an
absolute magnitude, the corresponding filter (one of BVRIJK), the galaxy
color type (e.g., "B-V", "B-R", "V-I", "V-J", "V-H", "V-K"; SDSS colors
such as "u-g", "u-r", "u-i", "u-z", "g-r", "g-i", "g0z", etc., can also
be used), and the color index.
If mag_err is defined, then error propagation is used and
(M_stellar, err_M_stellar) is returned. Note that if mag_err=0.0,
errors for the M/L ratio will still be propagated. The default error
for M/L is 0.1 dex, but this can be changed with the MtoL_err keyword;
if so, it must be in *log* units.
Uses M/L ratios from Table 1 of Bell & de Jong [see MassToLight() above]
and solar-luminosity conversion from Table 1.2 of Sparke & Gallagher
[see solarL() above]; to use the M/L ratios from Zibetti+2009, use
mode="Zibetti".
Alternatively, a user-supplied M/L value can be given with the MtoL
keyword.
"""
if (mag_err is None):
if MtoL is None:
MtoL = MassToLight(band, colorType, color, mode=mode)
if MtoL is None:
return None
solarLum = solarL(absMag, band)
return MtoL * solarLum
else:
if MtoL is None:
(MtoL, err_MtoL) = MassToLight(band, colorType, color, err=MtoL_err, mode=mode)
if MtoL is None:
return (None, None)
(solarLum, err_solarLum) = solarL(absMag, band, mag_err)
M_stellar = MtoL * solarLum
p1 = err_MtoL/MtoL
if (err_solarLum > 0.0):
p2 = err_solarLum/solarLum
else:
p2 = 0.0
err_M_stellar = math.sqrt(p1**2 + p2**2) * M_stellar
return (M_stellar, err_M_stellar)