-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy path_MultiNEAT.pyx
1196 lines (913 loc) · 49.8 KB
/
_MultiNEAT.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# distutils: language = c++
# cython: boundscheck=False
# cython: wraparound=False
# cython: initializedcheck=False
# cython: nonecheck=False
# cython: infer_types=False
# cython: nonecheck=False
# cython: embedsignature=True
# cython: c_string_type=str
# cython: c_string_encoding=ascii
from libcpp.vector cimport vector
from libcpp cimport bool
from cython.operator cimport dereference as deref, preincrement as preinc
cimport cMultiNeat as cmn
cdef class RNG:
cdef cmn.RNG* thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self):
self.thisptr = new cmn.RNG()
self.borrowed = False
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
def Seed(self, int a_seed):
self.thisptr.Seed(a_seed)
def TimeSeed(self):
self.thisptr.TimeSeed()
def RandPosNeg(self):
return self.thisptr.RandPosNeg()
def RandInt(self, x, y):
return self.thisptr.RandInt(x, y)
def RandFloat(self):
return self.thisptr.RandFloat()
def RandFloatClamped(self):
return self.thisptr.RandFloatSigned()
def RandGaussClamped(self):
return self.thisptr.RandGaussSigned()
def Roulette(self, a_probs):
return self.thisptr.Roulette(a_probs)
cdef class Parameters:
cdef cmn.Parameters *thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self):
self.thisptr = new cmn.Parameters()
self.borrowed = False
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
def Load(self, filename):
self.thisptr.Load(filename)
def Save(self, filename):
self.thisptr.Save(filename)
def Reset(self):
self.thisptr.Reset()
property PopulationSize:
def __get__(self): return self.thisptr.PopulationSize
def __set__(self, PopulationSize): self.thisptr.PopulationSize = PopulationSize
property DynamicCompatibility:
def __get__(self): return self.thisptr.DynamicCompatibility
def __set__(self, DynamicCompatibility): self.thisptr.DynamicCompatibility = DynamicCompatibility
property MinSpecies:
def __get__(self): return self.thisptr.MinSpecies
def __set__(self, MinSpecies): self.thisptr.MinSpecies = MinSpecies
property MaxSpecies:
def __get__(self): return self.thisptr.MaxSpecies
def __set__(self, MaxSpecies): self.thisptr.MaxSpecies = MaxSpecies
property InnovationsForever:
def __get__(self): return self.thisptr.InnovationsForever
def __set__(self, InnovationsForever): self.thisptr.InnovationsForever = InnovationsForever
property AllowClones:
def __get__(self): return self.thisptr.AllowClones
def __set__(self, AllowClones): self.thisptr.AllowClones = AllowClones
property YoungAgeTreshold:
def __get__(self): return self.thisptr.YoungAgeTreshold
def __set__(self, YoungAgeTreshold): self.thisptr.YoungAgeTreshold = YoungAgeTreshold
property YoungAgeFitnessBoost:
def __get__(self): return self.thisptr.YoungAgeFitnessBoost
def __set__(self, YoungAgeFitnessBoost): self.thisptr.YoungAgeFitnessBoost = YoungAgeFitnessBoost
property SpeciesMaxStagnation:
def __get__(self): return self.thisptr.SpeciesMaxStagnation
def __set__(self, SpeciesMaxStagnation): self.thisptr.SpeciesMaxStagnation = SpeciesMaxStagnation
property StagnationDelta:
def __get__(self): return self.thisptr.StagnationDelta
def __set__(self, StagnationDelta): self.thisptr.StagnationDelta = StagnationDelta
property OldAgeTreshold:
def __get__(self): return self.thisptr.OldAgeTreshold
def __set__(self, OldAgeTreshold): self.thisptr.OldAgeTreshold = OldAgeTreshold
property OldAgePenalty:
def __get__(self): return self.thisptr.OldAgePenalty
def __set__(self, OldAgePenalty): self.thisptr.OldAgePenalty = OldAgePenalty
property DetectCompetetiveCoevolutionStagnation:
def __get__(self): return self.thisptr.DetectCompetetiveCoevolutionStagnation
def __set__(self, DetectCompetetiveCoevolutionStagnation): self.thisptr.DetectCompetetiveCoevolutionStagnation = DetectCompetetiveCoevolutionStagnation
property KillWorstSpeciesEach:
def __get__(self): return self.thisptr.KillWorstSpeciesEach
def __set__(self, KillWorstSpeciesEach): self.thisptr.KillWorstSpeciesEach = KillWorstSpeciesEach
property KillWorstAge:
def __get__(self): return self.thisptr.KillWorstAge
def __set__(self, KillWorstAge): self.thisptr.KillWorstAge = KillWorstAge
property SurvivalRate:
def __get__(self): return self.thisptr.SurvivalRate
def __set__(self, SurvivalRate): self.thisptr.SurvivalRate = SurvivalRate
property CrossoverRate:
def __get__(self): return self.thisptr.CrossoverRate
def __set__(self, CrossoverRate): self.thisptr.CrossoverRate = CrossoverRate
property OverallMutationRate:
def __get__(self): return self.thisptr.OverallMutationRate
def __set__(self, OverallMutationRate): self.thisptr.OverallMutationRate = OverallMutationRate
property InterspeciesCrossoverRate:
def __get__(self): return self.thisptr.InterspeciesCrossoverRate
def __set__(self, InterspeciesCrossoverRate): self.thisptr.InterspeciesCrossoverRate = InterspeciesCrossoverRate
property MultipointCrossoverRate:
def __get__(self): return self.thisptr.MultipointCrossoverRate
def __set__(self, MultipointCrossoverRate): self.thisptr.MultipointCrossoverRate = MultipointCrossoverRate
property RouletteWheelSelection:
def __get__(self): return self.thisptr.RouletteWheelSelection
def __set__(self, RouletteWheelSelection): self.thisptr.RouletteWheelSelection = RouletteWheelSelection
property PhasedSearching:
def __get__(self): return self.thisptr.PhasedSearching
def __set__(self, PhasedSearching): self.thisptr.PhasedSearching = PhasedSearching
property DeltaCoding:
def __get__(self): return self.thisptr.DeltaCoding
def __set__(self, DeltaCoding): self.thisptr.DeltaCoding = DeltaCoding
property SimplifyingPhaseMPCTreshold:
def __get__(self): return self.thisptr.SimplifyingPhaseMPCTreshold
def __set__(self, SimplifyingPhaseMPCTreshold): self.thisptr.SimplifyingPhaseMPCTreshold = SimplifyingPhaseMPCTreshold
property SimplifyingPhaseStagnationTreshold:
def __get__(self): return self.thisptr.SimplifyingPhaseStagnationTreshold
def __set__(self, SimplifyingPhaseStagnationTreshold): self.thisptr.SimplifyingPhaseStagnationTreshold = SimplifyingPhaseStagnationTreshold
property ComplexityFloorGenerations:
def __get__(self): return self.thisptr.ComplexityFloorGenerations
def __set__(self, ComplexityFloorGenerations): self.thisptr.ComplexityFloorGenerations = ComplexityFloorGenerations
property NoveltySearch_K:
def __get__(self): return self.thisptr.NoveltySearch_K
def __set__(self, NoveltySearch_K): self.thisptr.NoveltySearch_K = NoveltySearch_K
property NoveltySearch_P_min:
def __get__(self): return self.thisptr.NoveltySearch_P_min
def __set__(self, NoveltySearch_P_min): self.thisptr.NoveltySearch_P_min = NoveltySearch_P_min
property NoveltySearch_Dynamic_Pmin:
def __get__(self): return self.thisptr.NoveltySearch_Dynamic_Pmin
def __set__(self, NoveltySearch_Dynamic_Pmin): self.thisptr.NoveltySearch_Dynamic_Pmin = NoveltySearch_Dynamic_Pmin
property NoveltySearch_No_Archiving_Stagnation_Treshold:
def __get__(self): return self.thisptr.NoveltySearch_No_Archiving_Stagnation_Treshold
def __set__(self, NoveltySearch_No_Archiving_Stagnation_Treshold): self.thisptr.NoveltySearch_No_Archiving_Stagnation_Treshold = NoveltySearch_No_Archiving_Stagnation_Treshold
property NoveltySearch_Pmin_lowering_multiplier:
def __get__(self): return self.thisptr.NoveltySearch_Pmin_lowering_multiplier
def __set__(self, NoveltySearch_Pmin_lowering_multiplier): self.thisptr.NoveltySearch_Pmin_lowering_multiplier = NoveltySearch_Pmin_lowering_multiplier
property NoveltySearch_Pmin_min:
def __get__(self): return self.thisptr.NoveltySearch_Pmin_min
def __set__(self, NoveltySearch_Pmin_min): self.thisptr.NoveltySearch_Pmin_min = NoveltySearch_Pmin_min
property NoveltySearch_Quick_Archiving_Min_Evaluations:
def __get__(self): return self.thisptr.NoveltySearch_Quick_Archiving_Min_Evaluations
def __set__(self, NoveltySearch_Quick_Archiving_Min_Evaluations): self.thisptr.NoveltySearch_Quick_Archiving_Min_Evaluations = NoveltySearch_Quick_Archiving_Min_Evaluations
property NoveltySearch_Pmin_raising_multiplier:
def __get__(self): return self.thisptr.NoveltySearch_Pmin_raising_multiplier
def __set__(self, NoveltySearch_Pmin_raising_multiplier): self.thisptr.NoveltySearch_Pmin_raising_multiplier = NoveltySearch_Pmin_raising_multiplier
property NoveltySearch_Recompute_Sparseness_Each:
def __get__(self): return self.thisptr.NoveltySearch_Recompute_Sparseness_Each
def __set__(self, NoveltySearch_Recompute_Sparseness_Each): self.thisptr.NoveltySearch_Recompute_Sparseness_Each = NoveltySearch_Recompute_Sparseness_Each
property MutateAddNeuronProb:
def __get__(self): return self.thisptr.MutateAddNeuronProb
def __set__(self, MutateAddNeuronProb): self.thisptr.MutateAddNeuronProb = MutateAddNeuronProb
property SplitRecurrent:
def __get__(self): return self.thisptr.SplitRecurrent
def __set__(self, SplitRecurrent): self.thisptr.SplitRecurrent = SplitRecurrent
property SplitLoopedRecurrent:
def __get__(self): return self.thisptr.SplitLoopedRecurrent
def __set__(self, SplitLoopedRecurrent): self.thisptr.SplitLoopedRecurrent = SplitLoopedRecurrent
property NeuronTries:
def __get__(self): return self.thisptr.NeuronTries
def __set__(self, NeuronTries): self.thisptr.NeuronTries = NeuronTries
property MutateAddLinkProb:
def __get__(self): return self.thisptr.MutateAddLinkProb
def __set__(self, MutateAddLinkProb): self.thisptr.MutateAddLinkProb = MutateAddLinkProb
property MutateAddLinkFromBiasProb:
def __get__(self): return self.thisptr.MutateAddLinkFromBiasProb
def __set__(self, MutateAddLinkFromBiasProb): self.thisptr.MutateAddLinkFromBiasProb = MutateAddLinkFromBiasProb
property MutateRemLinkProb:
def __get__(self): return self.thisptr.MutateRemLinkProb
def __set__(self, MutateRemLinkProb): self.thisptr.MutateRemLinkProb = MutateRemLinkProb
property MutateRemSimpleNeuronProb:
def __get__(self): return self.thisptr.MutateRemSimpleNeuronProb
def __set__(self, MutateRemSimpleNeuronProb): self.thisptr.MutateRemSimpleNeuronProb = MutateRemSimpleNeuronProb
property LinkTries:
def __get__(self): return self.thisptr.LinkTries
def __set__(self, LinkTries): self.thisptr.LinkTries = LinkTries
property RecurrentProb:
def __get__(self): return self.thisptr.RecurrentProb
def __set__(self, RecurrentProb): self.thisptr.RecurrentProb = RecurrentProb
property RecurrentLoopProb:
def __get__(self): return self.thisptr.RecurrentLoopProb
def __set__(self, RecurrentLoopProb): self.thisptr.RecurrentLoopProb = RecurrentLoopProb
property MutateWeightsProb:
def __get__(self): return self.thisptr.MutateWeightsProb
def __set__(self, MutateWeightsProb): self.thisptr.MutateWeightsProb = MutateWeightsProb
property MutateWeightsSevereProb:
def __get__(self): return self.thisptr.MutateWeightsSevereProb
def __set__(self, MutateWeightsSevereProb): self.thisptr.MutateWeightsSevereProb = MutateWeightsSevereProb
property WeightMutationRate:
def __get__(self): return self.thisptr.WeightMutationRate
def __set__(self, WeightMutationRate): self.thisptr.WeightMutationRate = WeightMutationRate
property WeightMutationMaxPower:
def __get__(self): return self.thisptr.WeightMutationMaxPower
def __set__(self, WeightMutationMaxPower): self.thisptr.WeightMutationMaxPower = WeightMutationMaxPower
property WeightReplacementMaxPower:
def __get__(self): return self.thisptr.WeightReplacementMaxPower
def __set__(self, WeightReplacementMaxPower): self.thisptr.WeightReplacementMaxPower = WeightReplacementMaxPower
property MaxWeight:
def __get__(self): return self.thisptr.MaxWeight
def __set__(self, MaxWeight): self.thisptr.MaxWeight = MaxWeight
property MutateActivationAProb:
def __get__(self): return self.thisptr.MutateActivationAProb
def __set__(self, MutateActivationAProb): self.thisptr.MutateActivationAProb = MutateActivationAProb
property MutateActivationBProb:
def __get__(self): return self.thisptr.MutateActivationBProb
def __set__(self, MutateActivationBProb): self.thisptr.MutateActivationBProb = MutateActivationBProb
property ActivationAMutationMaxPower:
def __get__(self): return self.thisptr.ActivationAMutationMaxPower
def __set__(self, ActivationAMutationMaxPower): self.thisptr.ActivationAMutationMaxPower = ActivationAMutationMaxPower
property ActivationBMutationMaxPower:
def __get__(self): return self.thisptr.ActivationBMutationMaxPower
def __set__(self, ActivationBMutationMaxPower): self.thisptr.ActivationBMutationMaxPower = ActivationBMutationMaxPower
property TimeConstantMutationMaxPower:
def __get__(self): return self.thisptr.TimeConstantMutationMaxPower
def __set__(self, TimeConstantMutationMaxPower): self.thisptr.TimeConstantMutationMaxPower = TimeConstantMutationMaxPower
property BiasMutationMaxPower:
def __get__(self): return self.thisptr.BiasMutationMaxPower
def __set__(self, BiasMutationMaxPower): self.thisptr.BiasMutationMaxPower = BiasMutationMaxPower
property MinActivationA:
def __get__(self): return self.thisptr.MinActivationA
def __set__(self, MinActivationA): self.thisptr.MinActivationA = MinActivationA
property MaxActivationA:
def __get__(self): return self.thisptr.MaxActivationA
def __set__(self, MaxActivationA): self.thisptr.MaxActivationA = MaxActivationA
property MinActivationB:
def __get__(self): return self.thisptr.MinActivationB
def __set__(self, MinActivationB): self.thisptr.MinActivationB = MinActivationB
property MaxActivationB:
def __get__(self): return self.thisptr.MaxActivationB
def __set__(self, MaxActivationB): self.thisptr.MaxActivationB = MaxActivationB
property MutateNeuronActivationTypeProb:
def __get__(self): return self.thisptr.MutateNeuronActivationTypeProb
def __set__(self, MutateNeuronActivationTypeProb): self.thisptr.MutateNeuronActivationTypeProb = MutateNeuronActivationTypeProb
property ActivationFunction_SignedSigmoid_Prob:
def __get__(self): return self.thisptr.ActivationFunction_SignedSigmoid_Prob
def __set__(self, ActivationFunction_SignedSigmoid_Prob): self.thisptr.ActivationFunction_SignedSigmoid_Prob = ActivationFunction_SignedSigmoid_Prob
property ActivationFunction_UnsignedSigmoid_Prob:
def __get__(self): return self.thisptr.ActivationFunction_UnsignedSigmoid_Prob
def __set__(self, ActivationFunction_UnsignedSigmoid_Prob): self.thisptr.ActivationFunction_UnsignedSigmoid_Prob = ActivationFunction_UnsignedSigmoid_Prob
property ActivationFunction_Tanh_Prob:
def __get__(self): return self.thisptr.ActivationFunction_Tanh_Prob
def __set__(self, ActivationFunction_Tanh_Prob): self.thisptr.ActivationFunction_Tanh_Prob = ActivationFunction_Tanh_Prob
property ActivationFunction_TanhCubic_Prob:
def __get__(self): return self.thisptr.ActivationFunction_TanhCubic_Prob
def __set__(self, ActivationFunction_TanhCubic_Prob): self.thisptr.ActivationFunction_TanhCubic_Prob = ActivationFunction_TanhCubic_Prob
property ActivationFunction_SignedStep_Prob:
def __get__(self): return self.thisptr.ActivationFunction_SignedStep_Prob
def __set__(self, ActivationFunction_SignedStep_Prob): self.thisptr.ActivationFunction_SignedStep_Prob = ActivationFunction_SignedStep_Prob
property ActivationFunction_UnsignedStep_Prob:
def __get__(self): return self.thisptr.ActivationFunction_UnsignedStep_Prob
def __set__(self, ActivationFunction_UnsignedStep_Prob): self.thisptr.ActivationFunction_UnsignedStep_Prob = ActivationFunction_UnsignedStep_Prob
property ActivationFunction_SignedGauss_Prob:
def __get__(self): return self.thisptr.ActivationFunction_SignedGauss_Prob
def __set__(self, ActivationFunction_SignedGauss_Prob): self.thisptr.ActivationFunction_SignedGauss_Prob = ActivationFunction_SignedGauss_Prob
property ActivationFunction_UnsignedGauss_Prob:
def __get__(self): return self.thisptr.ActivationFunction_UnsignedGauss_Prob
def __set__(self, ActivationFunction_UnsignedGauss_Prob): self.thisptr.ActivationFunction_UnsignedGauss_Prob = ActivationFunction_UnsignedGauss_Prob
property ActivationFunction_Abs_Prob:
def __get__(self): return self.thisptr.ActivationFunction_Abs_Prob
def __set__(self, ActivationFunction_Abs_Prob): self.thisptr.ActivationFunction_Abs_Prob = ActivationFunction_Abs_Prob
property ActivationFunction_SignedSine_Prob:
def __get__(self): return self.thisptr.ActivationFunction_SignedSine_Prob
def __set__(self, ActivationFunction_SignedSine_Prob): self.thisptr.ActivationFunction_SignedSine_Prob = ActivationFunction_SignedSine_Prob
property ActivationFunction_UnsignedSine_Prob:
def __get__(self): return self.thisptr.ActivationFunction_UnsignedSine_Prob
def __set__(self, ActivationFunction_UnsignedSine_Prob): self.thisptr.ActivationFunction_UnsignedSine_Prob = ActivationFunction_UnsignedSine_Prob
# property ActivationFunction_SignedSquare_Prob:
# def __get__(self): return self.thisptr.ActivationFunction_SignedSquare_Prob
# def __set__(self, ActivationFunction_SignedSquare_Prob): self.thisptr.ActivationFunction_SignedSquare_Prob = ActivationFunction_SignedSquare_Prob
#
# property ActivationFunction_UnsignedSquare_Prob:
# def __get__(self): return self.thisptr.ActivationFunction_UnsignedSquare_Prob
# def __set__(self, ActivationFunction_UnsignedSquare_Prob): self.thisptr.ActivationFunction_UnsignedSquare_Prob = ActivationFunction_UnsignedSquare_Prob
property ActivationFunction_Linear_Prob:
def __get__(self): return self.thisptr.ActivationFunction_Linear_Prob
def __set__(self, ActivationFunction_Linear_Prob): self.thisptr.ActivationFunction_Linear_Prob = ActivationFunction_Linear_Prob
property MutateNeuronTimeConstantsProb:
def __get__(self): return self.thisptr.MutateNeuronTimeConstantsProb
def __set__(self, MutateNeuronTimeConstantsProb): self.thisptr.MutateNeuronTimeConstantsProb = MutateNeuronTimeConstantsProb
property MutateNeuronBiasesProb:
def __get__(self): return self.thisptr.MutateNeuronBiasesProb
def __set__(self, MutateNeuronBiasesProb): self.thisptr.MutateNeuronBiasesProb = MutateNeuronBiasesProb
property MinNeuronTimeConstant:
def __get__(self): return self.thisptr.MinNeuronTimeConstant
def __set__(self, MinNeuronTimeConstant): self.thisptr.MinNeuronTimeConstant = MinNeuronTimeConstant
property MaxNeuronTimeConstant:
def __get__(self): return self.thisptr.MaxNeuronTimeConstant
def __set__(self, MaxNeuronTimeConstant): self.thisptr.MaxNeuronTimeConstant = MaxNeuronTimeConstant
property MinNeuronBias:
def __get__(self): return self.thisptr.MinNeuronBias
def __set__(self, MinNeuronBias): self.thisptr.MinNeuronBias = MinNeuronBias
property MaxNeuronBias:
def __get__(self): return self.thisptr.MaxNeuronBias
def __set__(self, MaxNeuronBias): self.thisptr.MaxNeuronBias = MaxNeuronBias
property DontUseBiasNeuron:
def __get__(self): return self.thisptr.DontUseBiasNeuron
def __set__(self, DontUseBiasNeuron): self.thisptr.DontUseBiasNeuron = DontUseBiasNeuron
property AllowLoops:
def __get__(self): return self.thisptr.AllowLoops
def __set__(self, AllowLoops): self.thisptr.AllowLoops = AllowLoops
property DisjointCoeff:
def __get__(self): return self.thisptr.DisjointCoeff
def __set__(self, DisjointCoeff): self.thisptr.DisjointCoeff = DisjointCoeff
property ExcessCoeff:
def __get__(self): return self.thisptr.ExcessCoeff
def __set__(self, ExcessCoeff): self.thisptr.ExcessCoeff = ExcessCoeff
property ActivationADiffCoeff:
def __get__(self): return self.thisptr.ActivationADiffCoeff
def __set__(self, ActivationADiffCoeff): self.thisptr.ActivationADiffCoeff = ActivationADiffCoeff
property ActivationBDiffCoeff:
def __get__(self): return self.thisptr.ActivationBDiffCoeff
def __set__(self, ActivationBDiffCoeff): self.thisptr.ActivationBDiffCoeff = ActivationBDiffCoeff
property WeightDiffCoeff:
def __get__(self): return self.thisptr.WeightDiffCoeff
def __set__(self, WeightDiffCoeff): self.thisptr.WeightDiffCoeff = WeightDiffCoeff
property TimeConstantDiffCoeff:
def __get__(self): return self.thisptr.TimeConstantDiffCoeff
def __set__(self, TimeConstantDiffCoeff): self.thisptr.TimeConstantDiffCoeff = TimeConstantDiffCoeff
property BiasDiffCoeff:
def __get__(self): return self.thisptr.BiasDiffCoeff
def __set__(self, BiasDiffCoeff): self.thisptr.BiasDiffCoeff = BiasDiffCoeff
property ActivationFunctionDiffCoeff:
def __get__(self): return self.thisptr.ActivationFunctionDiffCoeff
def __set__(self, ActivationFunctionDiffCoeff): self.thisptr.ActivationFunctionDiffCoeff = ActivationFunctionDiffCoeff
property CompatTreshold:
def __get__(self): return self.thisptr.CompatTreshold
def __set__(self, CompatTreshold): self.thisptr.CompatTreshold = CompatTreshold
property MinCompatTreshold:
def __get__(self): return self.thisptr.MinCompatTreshold
def __set__(self, MinCompatTreshold): self.thisptr.MinCompatTreshold = MinCompatTreshold
property CompatTresholdModifier:
def __get__(self): return self.thisptr.CompatTresholdModifier
def __set__(self, CompatTresholdModifier): self.thisptr.CompatTresholdModifier = CompatTresholdModifier
property CompatTreshChangeInterval_Generations:
def __get__(self): return self.thisptr.CompatTreshChangeInterval_Generations
def __set__(self, CompatTreshChangeInterval_Generations): self.thisptr.CompatTreshChangeInterval_Generations = CompatTreshChangeInterval_Generations
property CompatTreshChangeInterval_Evaluations:
def __get__(self): return self.thisptr.CompatTreshChangeInterval_Evaluations
def __set__(self, CompatTreshChangeInterval_Evaluations): self.thisptr.CompatTreshChangeInterval_Evaluations = CompatTreshChangeInterval_Evaluations
property Elitism:
'''Fraction of individuals to be copied unchanged'''
def __get__(self): return self.thisptr.Elitism
def __set__(self, double Elitism): self.thisptr.Elitism = Elitism
##############
# ES HyperNEAT params
##############
property DivisionThreshold:
def __get__(self): return self.thisptr.DivisionThreshold
def __set__(self, DivisionThreshold): self.thisptr.DivisionThreshold = DivisionThreshold
property VarianceThreshold:
def __get__(self): return self.thisptr.VarianceThreshold
def __set__(self, VarianceThreshold): self.thisptr.VarianceThreshold = VarianceThreshold
property BandThreshold:
'''Used for Band prunning.'''
def __get__(self): return self.thisptr.BandThreshold
def __set__(self, BandThreshold): self.thisptr.BandThreshold = BandThreshold
property InitialDepth:
'''Min Depth of the quadtree'''
def __get__(self): return self.thisptr.InitialDepth
def __set__(self, unsigned int InitialDepth): self.thisptr.InitialDepth = InitialDepth
property MaxDepth:
'''Max Depth of the quadtree'''
def __get__(self): return self.thisptr.MaxDepth
def __set__(self, unsigned int MaxDepth): self.thisptr.MaxDepth = MaxDepth
property IterationLevel:
'''How many hidden layers before connecting nodes to output.
At 0 there is one hidden layer. At 1, there are two and so on.'''
def __get__(self): return self.thisptr.IterationLevel
def __set__(self, unsigned int IterationLevel): self.thisptr.IterationLevel = IterationLevel
property CPPN_Bias:
'''The Bias value for the CPPN queries'''
def __get__(self): return self.thisptr.CPPN_Bias
def __set__(self, double CPPN_Bias): self.thisptr.CPPN_Bias = CPPN_Bias
property Width:
def __get__(self): return self.thisptr.Width
def __set__(self, double Width): self.thisptr.Width = Width
property Height:
def __get__(self): return self.thisptr.Height
def __set__(self, double Height): self.thisptr.Height = Height
property Qtree_X:
def __get__(self): return self.thisptr.Qtree_X
def __set__(self, double Qtree_X): self.thisptr.Qtree_X = Qtree_X
property Qtree_Y:
def __get__(self): return self.thisptr.Qtree_Y
def __set__(self, double Qtree_Y): self.thisptr.Qtree_Y = Qtree_Y
property Leo:
'''Use Link Expression output'''
def __get__(self): return self.thisptr.Leo
def __set__(self, bint Leo): self.thisptr.Leo = Leo
property LeoThreshold:
'''Threshold above which a connection is expressed'''
def __get__(self): return self.thisptr.LeoThreshold
def __set__(self, double LeoThreshold): self.thisptr.LeoThreshold = LeoThreshold
property LeoSeed:
def __get__(self): return self.thisptr.LeoSeed
def __set__(self, bint LeoSeed): self.thisptr.LeoSeed = LeoSeed
property GeometrySeed:
def __get__(self): return self.thisptr.GeometrySeed
def __set__(self, bint GeometrySeed): self.thisptr.GeometrySeed = GeometrySeed
cdef class Connection:
cdef cmn.Connection *thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self):
self.thisptr = new cmn.Connection()
self.borrowed = False
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
property source_neuron_idx:
def __get__(self): return self.thisptr.m_source_neuron_idx
def __set__(self, m_source_neuron_idx): self.thisptr.m_source_neuron_idx = m_source_neuron_idx
property target_neuron_idx:
def __get__(self): return self.thisptr.m_target_neuron_idx
def __set__(self, m_target_neuron_idx): self.thisptr.m_target_neuron_idx = m_target_neuron_idx
property weight:
def __get__(self): return self.thisptr.m_weight
def __set__(self, m_weight): self.thisptr.m_weight = m_weight
property recur_flag:
def __get__(self): return self.thisptr.m_recur_flag
def __set__(self, m_recur_flag): self.thisptr.m_recur_flag = m_recur_flag
cdef class Neuron:
cdef cmn.Neuron *thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self):
self.thisptr = new cmn.Neuron()
self.borrowed = False
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
property activation:
def __get__(self): return self.thisptr.m_activation
def __set__(self, m_activation): self.thisptr.m_activation = m_activation
property activation_function_type:
def __get__(self): return self.thisptr.m_activation_function_type
def __set__(self, m_activation_function_type): self.thisptr.m_activation_function_type = m_activation_function_type
property a:
def __get__(self): return self.thisptr.m_a
def __set__(self, m_a): self.thisptr.m_a = m_a
property b:
def __get__(self): return self.thisptr.m_b
def __set__(self, m_b): self.thisptr.m_b = m_b
property timeconst:
def __get__(self): return self.thisptr.m_timeconst
def __set__(self, m_timeconst): self.thisptr.m_timeconst = m_timeconst
property bias:
def __get__(self): return self.thisptr.m_bias
def __set__(self, m_bias): self.thisptr.m_bias = m_bias
property x:
def __get__(self): return self.thisptr.m_x
def __set__(self, m_x): self.thisptr.m_x = m_x
property y:
def __get__(self): return self.thisptr.m_y
def __set__(self, m_y): self.thisptr.m_y = m_y
property z:
def __get__(self): return self.thisptr.m_z
def __set__(self, m_z): self.thisptr.m_z = m_z
property sx:
def __get__(self): return self.thisptr.m_sx
def __set__(self, m_sx): self.thisptr.m_sx = m_sx
property sy:
def __get__(self): return self.thisptr.m_sy
def __set__(self, m_sy): self.thisptr.m_sy = m_sy
property sz:
def __get__(self): return self.thisptr.m_sz
def __set__(self, m_sz): self.thisptr.m_sz = m_sz
property substrate_coords:
def __get__(self): return self.thisptr.m_substrate_coords
def __set__(self, m_substrate_coords): self.thisptr.m_substrate_coords = m_substrate_coords
property split_y:
def __get__(self): return self.thisptr.m_split_y
def __set__(self, m_split_y): self.thisptr.m_split_y = m_split_y
property type:
def __get__(self): return self.thisptr.m_type
def __set__(self, m_type): self.thisptr.m_type = m_type
cdef class NeuralNetwork:
cdef cmn.NeuralNetwork *thisptr # hold a C++ instance which we're wrapping
def __cinit__(self, x=None):
if x is None:
self.thisptr = new cmn.NeuralNetwork()
else:
self.thisptr = new cmn.NeuralNetwork(x)
def __dealloc__(self):
del self.thisptr
def InitRTRLMatrix(self):
self.thisptr.InitRTRLMatrix()
def ActivateFast(self):
self.thisptr.ActivateFast()
def Activate(self):
self.thisptr.Activate()
def ActivateUseInternalBias(self):
self.thisptr.ActivateUseInternalBias()
def ActivateLeaky(self, step):
self.thisptr.ActivateLeaky(step)
def RTRL_update_gradients(self):
self.thisptr.RTRL_update_gradients()
def RTRL_update_error(self, double a_target):
self.thisptr.RTRL_update_error(a_target)
def RTRL_update_weights(self):
self.thisptr.RTRL_update_weights()
def Adapt(self, Parameters a_Parameters):
self.thisptr.Adapt(deref(a_Parameters.thisptr))
def Flush(self):
self.thisptr.Flush()
def FlushCube(self):
self.thisptr.FlushCube()
def Input(self, a_Inputs):
self.thisptr.Input(a_Inputs)
def Output(self):
return self.thisptr.Output()
def Clear(self):
self.thisptr.Clear()
def Save(self, const char* a_filename):
self.thisptr.Save(a_filename)
def Load(self, const char* a_filename):
return self.thisptr.Load(a_filename)
def NumInputs(self):
return self.thisptr.NumInputs()
def NumOutputs(self):
return self.thisptr.NumOutputs()
def AddNeuron(self, Neuron a_n):
self.thisptr.AddNeuron(deref(a_n.thisptr))
def AddConnection(self, Connection a_c):
self.thisptr.AddConnection(deref(a_c.thisptr))
def GetConnectionByIndex(self, unsigned int a_idx):
cdef cmn.Connection ncon= self.thisptr.GetConnectionByIndex(a_idx)
return pyConnectionFromReference(ncon)
def GetNeuronByIndex(self, unsigned int a_idx):
cdef cmn.Neuron nneur = self.thisptr.GetNeuronByIndex(a_idx)
return pyNeuronFromReference(nneur)
def SetInputOutputDimentions(self, const unsigned short a_i, const unsigned short a_o):
self.thisptr.SetInputOutputDimentions(a_i, a_o)
property num_inputs:
def __get__(self): return self.thisptr.m_num_inputs
def __set__(self, m_num_inputs): self.thisptr.m_num_inputs = m_num_inputs
property num_outputs:
def __get__(self): return self.thisptr.m_num_outputs
def __set__(self, m_num_outputs): self.thisptr.m_num_outputs = m_num_outputs
property neurons:
def __get__(self): return neuronsVectorToList(self.thisptr.m_neurons)
def __set__(self, list m_neurons): self.thisptr.m_neurons = neuronsListToVector(m_neurons)
property connections:
def __get__(self): return connectionsVectorToList(self.thisptr.m_connections)
def __set__(self, list m_connections): self.thisptr.m_connections = connectionsListToVector(m_connections)
"""
#############################################
Substrate class
#############################################
"""
#cdef vector[ vector[double] ] x
#cdef vector[double] y
#y.push_back(1)
#x.push_back(y)
cdef class Substrate:
cdef cmn.Substrate *thisptr # hold a C++ instance which we're wrapping
def __cinit__(self, *attribs):
if len(attribs) == 0:
self.thisptr = new cmn.Substrate()
else:
i, h, o = attribs
self.thisptr = new cmn.Substrate(i, h, o)
def __dealloc__(self):
del self.thisptr
def GetMinCPPNInputs(self):
return self.thisptr.GetMinCPPNInputs()
def GetMinCPPNOutputs(self):
return self.thisptr.GetMinCPPNOutputs()
def PrintInfo(self):
return self.thisptr.PrintInfo()
property m_input_coords:
def __get__(self): return self.thisptr.m_input_coords
def __set__(self, m_input_coords): self.thisptr.m_input_coords = m_input_coords
property m_hidden_coords:
def __get__(self): return self.thisptr.m_hidden_coords
def __set__(self, m_hidden_coords): self.thisptr.m_hidden_coords = m_hidden_coords
property m_output_coords:
def __get__(self): return self.thisptr.m_output_coords
def __set__(self, m_output_coords): self.thisptr.m_output_coords = m_output_coords
property m_leaky:
def __get__(self): return self.thisptr.m_leaky
def __set__(self, m_leaky): self.thisptr.m_leaky = m_leaky
property m_with_distance:
def __get__(self): return self.thisptr.m_with_distance
def __set__(self, m_with_distance): self.thisptr.m_with_distance = m_with_distance
property m_allow_input_hidden_links:
def __get__(self): return self.thisptr.m_allow_input_hidden_links
def __set__(self, m_allow_input_hidden_links): self.thisptr.m_allow_input_hidden_links = m_allow_input_hidden_links
property m_allow_input_output_links:
def __get__(self): return self.thisptr.m_allow_input_output_links
def __set__(self, m_allow_input_output_links): self.thisptr.m_allow_input_output_links = m_allow_input_output_links
property m_allow_hidden_hidden_links:
def __get__(self): return self.thisptr.m_allow_hidden_hidden_links
def __set__(self, m_allow_hidden_hidden_links): self.thisptr.m_allow_hidden_hidden_links = m_allow_hidden_hidden_links
property m_allow_hidden_output_links:
def __get__(self): return self.thisptr.m_allow_hidden_output_links
def __set__(self, m_allow_hidden_output_links): self.thisptr.m_allow_hidden_output_links = m_allow_hidden_output_links
property m_allow_output_hidden_links:
def __get__(self): return self.thisptr.m_allow_output_hidden_links
def __set__(self, m_allow_output_hidden_links): self.thisptr.m_allow_output_hidden_links = m_allow_output_hidden_links
property m_allow_output_output_links:
def __get__(self): return self.thisptr.m_allow_output_output_links
def __set__(self, m_allow_output_output_links): self.thisptr.m_allow_output_output_links = m_allow_output_output_links
property m_allow_looped_hidden_links:
def __get__(self): return self.thisptr.m_allow_looped_hidden_links
def __set__(self, m_allow_looped_hidden_links): self.thisptr.m_allow_looped_hidden_links = m_allow_looped_hidden_links
property m_allow_looped_output_links:
def __get__(self): return self.thisptr.m_allow_looped_output_links
def __set__(self, m_allow_looped_output_links): self.thisptr.m_allow_looped_output_links = m_allow_looped_output_links
property m_hidden_nodes_activation:
def __get__(self): return self.thisptr.m_hidden_nodes_activation
def __set__(self, m_hidden_nodes_activation): self.thisptr.m_hidden_nodes_activation = m_hidden_nodes_activation
property m_output_nodes_activation:
def __get__(self): return self.thisptr.m_output_nodes_activation
def __set__(self, m_output_nodes_activation): self.thisptr.m_output_nodes_activation = m_output_nodes_activation
# property m_link_threshold:
# def __get__(self): return self.thisptr.m_link_threshold
# def __set__(self, m_link_threshold): self.thisptr.m_link_threshold = m_link_threshold
property m_max_weight_and_bias:
def __get__(self): return self.thisptr.m_max_weight_and_bias
def __set__(self, m_max_weight_and_bias): self.thisptr.m_max_weight_and_bias = m_max_weight_and_bias
property m_min_time_const:
def __get__(self): return self.thisptr.m_min_time_const
def __set__(self, m_min_time_const): self.thisptr.m_min_time_const = m_min_time_const
property m_max_time_const:
def __get__(self): return self.thisptr.m_max_time_const
def __set__(self, m_max_time_const): self.thisptr.m_max_time_const = m_max_time_const
cdef class Genome:
cdef cmn.Genome *thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self, *attribs):
cdef int attribsLen = len(attribs)
cdef Parameters a_ps
self.borrowed = False
if attribsLen == 0:
self.thisptr = new cmn.Genome()
elif attribsLen == 1:
if isinstance(attribs[0], Genome):
self.thisptr = new cmn.Genome(deref(<cmn.Genome*>((<Genome>attribs[0]).thisptr)))
elif isinstance(attribs[0], str):
self.thisptr = new cmn.Genome(<char*>attribs[0])
elif attribsLen == 9:
a_id, a_ni, a_nh, a_no, a_fs, a_oa, a_ha, a_st, a_ps = attribs
self.thisptr = new cmn.Genome(a_id, a_ni, a_nh, a_no, a_fs, a_oa, a_ha, a_st,
deref((<Parameters>a_ps).thisptr))
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
def __repr__(self):
return 'ID {} Fitt {}'.format(self.thisptr.GetID(), self.thisptr.GetFitness())
property Evaluated:
def __get__(self): return self.thisptr.m_Evaluated
def NumNeurons(self):
return self.thisptr.NumNeurons()
property Num_Neurons:
def __get__(self): return self.thisptr.NumNeurons()
def NumLinks(self):
return self.thisptr.NumLinks()
property Num_Links:
def __get__(self): return self.thisptr.NumLinks()
def NumInputs(self):
return self.thisptr.NumInputs()
property Num_Inputs:
def __get__(self): return self.thisptr.NumInputs()
def NumOutputs(self):
return self.thisptr.NumOutputs()
property Num_Outputs:
def __get__(self): return self.thisptr.NumOutputs()
def GetFitness(self):
return self.thisptr.GetFitness()
property Fitness:
def __get__(self): return self.thisptr.GetFitness()
def __set__(self, val): self.thisptr.SetFitness(val)
def SetFitness(self, a_f):
self.thisptr.SetFitness(a_f)
def GetID(self):
return self.thisptr.GetID()
property ID:
def __get__(self): return self.thisptr.GetID()
def __set__(self, val): self.thisptr.SetID(val)
def CalculateDepth(self):
self.thisptr.CalculateDepth()
def GetDepth(self):
return self.thisptr.GetDepth()
def BuildPhenotype(self, NeuralNetwork net):
self.thisptr.BuildPhenotype(deref(net.thisptr))
def BuildHyperNEATPhenotype(self, NeuralNetwork net, Substrate subst):
self.thisptr.BuildHyperNEATPhenotype(deref(net.thisptr), deref(subst.thisptr))
#def BuildESHyperNEATPhenotype(Genome self, NeuralNetwork a_net, Substrate subst, Parameters params):
# self.thisptr.BuildESHyperNEATPhenotype(deref(a_net.thisptr), deref(subst.thisptr), deref(params.thisptr))
def Save(self, str a_filename):
self.thisptr.Save(a_filename)
def IsEvaluated(self):
return self.thisptr.IsEvaluated()
def SetEvaluated(self):
self.thisptr.SetEvaluated()
def ResetEvaluated(self):
self.thisptr.ResetEvaluated()
cdef class Species:
cdef cmn.Species *thisptr # hold a C++ instance which we're wrapping
cdef bint borrowed
def __cinit__(self, Genome a_Seed, int a_id):
if a_Seed is None and a_id == -1:
return
self.thisptr = new cmn.Species(deref(a_Seed.thisptr), a_id)
self.borrowed = False
def __dealloc__(self):
if not self.borrowed:
del self.thisptr
def __repr__(self):
return 'ID {} AgeGens {}'.format(self.thisptr.ID(), self.thisptr.AgeGens())
def GetBestFitness(self):
return self.thisptr.GetBestFitness()
def NumIndividuals(self):
return self.thisptr.NumIndividuals()
def GetLeader(self):
return pyGenomeFromConstant(self.thisptr.GetLeader())
property BestFitness:
def __get__(self): return self.thisptr.m_BestFitness
def __set__(self, m_BestFitness): self.thisptr.m_BestFitness = m_BestFitness
property BestGenome:
def __get__(self): return pyGenomeFromConstant(self.thisptr.m_BestGenome)
def __set__(self, Genome m_BestGenome): self.thisptr.m_BestGenome = deref(m_BestGenome.thisptr)
property GensNoImprovement:
def __get__(self): return self.thisptr.m_GensNoImprovement
def __set__(self, m_GensNoImprovement): self.thisptr.m_GensNoImprovement = m_GensNoImprovement
property B:
def __get__(self): return self.thisptr.m_B
def __set__(self, m_B): self.thisptr.m_B = m_B
property Individuals:
def __get__(self): return genomesVectorToList(self.thisptr.m_Individuals)
property ID:
def __get__(self): return self.thisptr.ID()
property Age:
def __get__(self): return self.thisptr.AgeGens()
cdef class Population:
cdef cmn.Population *thisptr # hold a C++ instance which we're wrapping
def __cinit__(self, *attribs):
cdef Genome a_g
cdef Parameters a_ps
cdef int a_RNG_seed
if len(attribs) == 1:
self.thisptr = new cmn.Population(attribs[0])
else:
a_g, a_ps, a_r, a_rr, a_RNG_seed = attribs