-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan.py
273 lines (213 loc) · 9.04 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Code for my solution to the SSA Deep Learning Coursework
"""
# imports
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
from time import sleep
#set up cuda device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#class names for training and test datasets
class_names = ['airplane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
#tunable hyperparamters
BATCH_SIZE = 32
NUM_EPOCHS = 50
P_SWITCH = 1
DG_RATIO = 1
LABEL_SOFTNESS = 0.3
NORMALISE = False
#setting up custom dataset based on CIFAR10 but with only the necessary classes
class PegasusDataset(torchvision.datasets.CIFAR10):
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False):
super().__init__(root, train, transform, target_transform, download)
plane_label = 0
bird_label = 2
deer_label = 4
horse_label = 7
valid_classes = [plane_label, bird_label, deer_label, horse_label] # index of birds and horses
pegasus_data = [self.data[i] for i in range(len(self.targets)) if self.targets[i] in valid_classes]
# print(type(pegasus_data))
pegasus_targets = [self.targets[i] for i in range(len(self.targets)) if self.targets[i] in valid_classes]
self.data = pegasus_data
self.targets = pegasus_targets
# define the generator model
class Generator(nn.Module):
def __init__(self, f=64):
super(Generator, self).__init__()
self.generate = nn.Sequential(
nn.ConvTranspose2d(100, f*8, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*8),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(f*8, f*4, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*4),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(f*4, f*2, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*2),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(f*2, f, 4, 2, 1, bias=False),
nn.BatchNorm2d(f),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(f, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
# define the discriminator model
class Discriminator(nn.Module):
def __init__(self, f=64):
super(Discriminator, self).__init__()
self.discriminate = nn.Sequential(
nn.Conv2d(3, f, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(f, f*2, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(f*2, f*4, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(f*4, f*8, 4, 2, 1, bias=False),
nn.BatchNorm2d(f*8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(f*8, 1, 4, 2, 1, bias=False),
nn.Sigmoid()
)
# training dataset
train_set = PegasusDataset('data', train=True, download=True, transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]))
# testing dataset
test_set = PegasusDataset('data', train=False, download=True, transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]))
# dataloaders used for easier access to data for training
train_loader = torch.utils.data.DataLoader(train_set, shuffle=True, batch_size=BATCH_SIZE, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_set, shuffle=True, batch_size=BATCH_SIZE, drop_last=True)
# create generator and discriminator
G = Generator().to(device)
D = Discriminator().to(device)
# initialise the optimiser
optimiser_G = torch.optim.Adam(G.parameters(), lr=0.0002, betas=(0.5,0.99))
optimiser_D = torch.optim.Adam(D.parameters(), lr=0.0002, betas=(0.5,0.99))
bce_loss = nn.BCELoss()
# arrays used to track loss over each epoch
gen_loss_per_epoch = []
dis_loss_per_epoch = []
# main training loop
for epoch in range(NUM_EPOCHS):
# arrays for metrics
gen_loss_arr = np.zeros(0)
dis_loss_arr = np.zeros(0)
dg_count = 0
# probabilistic label switching
switch_rand = random.random()
# iterate over the training dataset
for batch, targets in train_loader:
batch, targets = batch.to(device), targets.to(device)
# applying label softness
real_label = torch.full((BATCH_SIZE, ), 1 * (1 - random.random() *LABEL_SOFTNESS), device=device)
fake_label = torch.full((BATCH_SIZE, ), 1 * LABEL_SOFTNESS, device=device)
# if switching labels
if P_SWITCH > switch_rand:
temp = real_label.clone().detach()
real_label = fake_label.clone().detach()
fake_label = temp
# train discriminator
optimiser_D.zero_grad()
# process all real batch first
# calculate real loss
l_r = bce_loss(D.discriminate(batch), real_label) # real -> 1
# backpropogate
l_r.backward()
# process all fake batch
g = G.generate(torch.randn(batch.size(0), 100, 1, 1).to(device))
# calculate fake loss
l_f = bce_loss(D.discriminate(g), fake_label) # fake -> 0
# backpropogate
l_f.backward()
# step optimsier
optimiser_D.step()
# combined loss, useful for plotitng but not for training
loss_d = (l_r + l_f) / 2
dis_loss_arr = np.append(dis_loss_arr, loss_d.mean().item())
#used for dg_ratio
dg_count += 1
#if trained discriminator enough
if dg_count == DG_RATIO:
# train generator
optimiser_G.zero_grad()
g = G.generate(torch.randn(batch.size(0), 100, 1, 1).to(device))
loss_g = bce_loss(D.discriminate(g).view(-1), real_label) # fake -> 1
loss_g.backward()
optimiser_G.step()
# append multiple to make plot easier to visualise
for _ in range(DG_RATIO):
gen_loss_arr = np.append(gen_loss_arr, loss_g.mean().item())
dg_count = 0
gen_loss_per_epoch.append(gen_loss_arr[len(gen_loss_arr) - 1])
dis_loss_per_epoch.append(dis_loss_arr[len(dis_loss_arr) - 1])
print('Training epoch %d complete' % epoch)
# display pegasus attempts
g = G.generate(torch.randn(BATCH_SIZE, 100, 1, 1).to(device))
plt.figure(figsize=(10,10))
# have to use multiple batches if wanting to display 64 images and batch size < 64
if BATCH_SIZE >= 64:
for i in range(64):
plt.subplot(8,8,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(g[i].cpu().data.permute(0,2,1).contiguous().permute(2,1,0), cmap=plt.cm.binary)
else:
num_images_displayed = 0
batch_num = 0
while num_images_displayed < 64:
plt.subplot(8,8,num_images_displayed+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(g[batch_num].cpu().data.permute(0,2,1).contiguous().permute(2,1,0), cmap=plt.cm.binary)
num_images_displayed += 1
batch_num += 1
if batch_num >= BATCH_SIZE:
batch_num = 0
g = G.generate(torch.randn(BATCH_SIZE, 100, 1, 1).to(device))
# save output
plt.savefig('./output/pegasus_e%sb%sd%sp%ss%s.png' % (str(NUM_EPOCHS),
BATCH_SIZE,
str(DG_RATIO),
str(P_SWITCH).replace('.', ''),
str(LABEL_SOFTNESS).replace('.', '')))
# clear figures
plt.cla()
plt.clf()
# plot loss data for final epoch
plt.plot(np.arange(len(gen_loss_arr)), gen_loss_arr, color='green', label='Generator loss')
plt.plot(np.arange(len(dis_loss_arr)), dis_loss_arr, color='red', label='Discriminator loss')
plt.title('Loss in final epoch')
plt.ylabel('Loss')
plt.xlabel('Training iteration')
plt.legend(loc=2)
plt.savefig('./output/loss_e%sb%sd%sp%ss%s.png' % (str(NUM_EPOCHS),
BATCH_SIZE,
str(DG_RATIO),
str(P_SWITCH).replace('.', ''),
str(LABEL_SOFTNESS).replace('.', '')))
plt.cla()
plt.clf()
# plot loss data for final training cycle on each epoch
plt.plot(np.arange(len(gen_loss_per_epoch)), gen_loss_per_epoch, color='green', label='Generator loss')
plt.plot(np.arange(len(dis_loss_per_epoch)), dis_loss_per_epoch, color='red', label='Discriminator loss')
plt.title('Loss over all epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(loc=2)
plt.savefig('./output/epoch_e%sb%sd%sp%ss%s.png' % (str(NUM_EPOCHS),
BATCH_SIZE,
str(DG_RATIO),
str(P_SWITCH).replace('.', ''),
str(LABEL_SOFTNESS).replace('.', '')))