forked from wgrathwohl/GWG_release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfhmm_sample.py
239 lines (198 loc) · 8.43 KB
/
fhmm_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import torch
import numpy as np
import samplers
import fhmm
import matplotlib.pyplot as plt
import os
device = torch.device('cuda:' + str(0) if torch.cuda.is_available() else 'cpu')
import time
import block_samplers
import pickle
def makedirs(dirname):
"""
Make directory only if it's not already there.
"""
if not os.path.exists(dirname):
os.makedirs(dirname)
def main(args):
makedirs("{}/sources".format(args.save_dir))
torch.manual_seed(args.seed)
np.random.seed(args.seed)
W = args.W_init_sigma * torch.randn((args.K,))
W0 = args.W_init_sigma * torch.randn((1,))
p = args.X_keep_prob * torch.ones((args.K,))
v = args.X0_mean * torch.ones((args.K,))
model = fhmm.FHMM(args.N, args.K, W, W0, args.obs_sigma, p, v, alt_logpx=args.alt)
model.to(device)
print("device is", device)
# generate data
Xgt = model.sample_X(1)
p_y_given_Xgt = model.p_y_given_x(Xgt)
mu = p_y_given_Xgt.loc
mu_true = mu[0]
plt.clf()
plt.plot(mu_true.detach().cpu().numpy(), label="mean")
ygt = p_y_given_Xgt.sample()[0]
plt.plot(ygt.detach().cpu().numpy(), label='sample')
plt.legend()
plt.savefig("{}/data.png".format(args.save_dir))
ygt = ygt.to(device)
for k in range(args.K):
plt.clf()
plt.plot(Xgt[0, :, k].detach().cpu().numpy())
plt.savefig("{}/sources/x_{}.png".format(args.save_dir, k))
logp_joint_real = model.log_p_joint(ygt, Xgt).item()
print("joint likelihood of real data is {}".format(logp_joint_real))
log_joints = {}
diffs = {}
times = {}
recons = {}
ars = {}
hops = {}
phops = {}
mus = {}
dim = args.K * args.N
x_init = model.sample_X(args.n_test_samples).to(device)
samp_model = lambda _x: model.log_p_joint(ygt, _x)
temps = ['bg-1', 'bg-2', 'hb-10-1', 'gwg', 'gwg-3', 'gwg-5']
for temp in temps:
makedirs("{}/{}".format(args.save_dir, temp))
if temp == 'dim-gibbs':
sampler = samplers.PerDimGibbsSampler(dim)
elif temp == "rand-gibbs":
sampler = samplers.PerDimGibbsSampler(dim, rand=True)
elif "bg-" in temp:
block_size = int(temp.split('-')[1])
sampler = block_samplers.BlockGibbsSampler(dim, block_size)
elif "hb-" in temp:
block_size, hamming_dist = [int(v) for v in temp.split('-')[1:]]
sampler = block_samplers.HammingBallSampler(dim, block_size, hamming_dist)
elif temp == "gwg":
sampler = samplers.DiffSampler(dim, 1,
fixed_proposal=False, approx=True, multi_hop=False, temp=2.)
elif "gwg-" in temp:
n_hops = int(temp.split('-')[1])
sampler = samplers.MultiDiffSampler(dim, 1,
approx=True, temp=2., n_samples=n_hops)
else:
raise ValueError("Invalid sampler...")
x = x_init.clone().view(x_init.size(0), -1)
diffs[temp] = []
log_joints[temp] = []
ars[temp] = []
hops[temp] = []
phops[temp] = []
recons[temp] = []
start_time = time.time()
for i in range(args.n_steps + 1):
if args.anneal is None:
sm = samp_model
else:
s = np.linspace(args.anneal, args.obs_sigma, args.n_steps + 1)[i]
sm = lambda _x: model.log_p_joint(ygt, _x, sigma=s)
xhat = sampler.step(x.detach(), sm).detach()
# compute hamming dist
cur_hops = (x != xhat).float().sum(-1).mean().item()
# update trajectory
x = xhat
if i % 1000 == 0:
p_y_given_x = model.p_y_given_x(x)
mu = p_y_given_x.loc
plt.clf()
plt.plot(mu_true.detach().cpu().numpy(), label="true")
plt.plot(mu[0].detach().cpu().numpy() + .01, label='mu0')
plt.plot(mu[1].detach().cpu().numpy() - .01, label='mu1')
plt.legend()
plt.savefig("{}/{}/mean_{}.png".format(args.save_dir, temp, i))
mus[temp] = mu[0].detach().cpu().numpy()
if i % 10 == 0:
p_y_given_x = model.p_y_given_x(x)
mu = p_y_given_x.loc
err = ((mu - ygt[None]) ** 2).sum(1).mean()
recons[temp].append(err.item())
log_j = model.log_p_joint(ygt, x)
diff = (x.view(x.size(0), args.N, args.K) != Xgt).float().view(x.size(0), -1).mean(1)
log_joints[temp].append(log_j.mean().item())
diffs[temp].append(diff.mean().item())
hops[temp].append(cur_hops)
print("temp {}, itr = {}, log-joint = {:.4f}, "
"hop-dist = {:.4f}, recons = {:.4f}".format(temp, i, log_j.mean().item(), cur_hops, err.item()))
for k in range(args.K):
plt.clf()
xr = x.view(x.size(0), args.N, args.K)
plt.plot(xr[0, :, k].detach().cpu().numpy())
plt.savefig("{}/{}/source_{}.png".format(args.save_dir, temp, k))
times[temp] = time.time() - start_time
plt.clf()
for temp in temps:
plt.plot(log_joints[temp], label=temp)
plt.plot([logp_joint_real for _ in log_joints[temp]], label="true")
plt.legend()
plt.savefig("{}/joints.png".format(args.save_dir))
plt.clf()
for temp in temps:
plt.plot(recons[temp], label=temp)
plt.legend()
plt.savefig("{}/recons.png".format(args.save_dir))
plt.clf()
for temp in temps:
plt.plot(diffs[temp], label=temp)
plt.legend()
plt.savefig("{}/errs.png".format(args.save_dir))
plt.clf()
for i, temp in enumerate(temps):
plt.plot(mus[temp] + float(i) * .01, label=temp)
plt.plot(mu_true.detach().cpu().numpy(), label="true")
plt.legend()
plt.savefig("{}/mean.png".format(args.save_dir))
plt.clf()
for temp in temps:
plt.plot(hops[temp], label="{}".format(temp))
plt.legend()
plt.savefig("{}/hops.png".format(args.save_dir))
with open("{}/results.pkl".format(args.save_dir), 'wb') as f:
results = {
'hops': hops,
'recons': recons,
'joints': log_joints,
}
pickle.dump(results, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', type=str, default="/tmp/test_discrete")
parser.add_argument('--data', choices=['random'], type=str, default='random')
parser.add_argument('--n_steps', type=int, default=5000)
parser.add_argument('--n_samples', type=int, default=500)
parser.add_argument('--n_test_samples', type=int, default=100)
parser.add_argument('--n_multi_sample', type=int, default=1)
parser.add_argument('--seed', type=int, default=1234567)
parser.add_argument('--multi_sample', action="store_true")
parser.add_argument('--approx', action="store_true")
parser.add_argument('--alt', action="store_true")
parser.add_argument('--anneal', type=float, default=None)
parser.add_argument('--W_init_sigma', type=float, default=1.)
parser.add_argument('--obs_sigma', type=float, default=.5)
parser.add_argument('--X0_mean', type=float, default=.1)
parser.add_argument('--X_keep_prob', type=float, default=.95)
parser.add_argument('--K', type=int, default=10)
parser.add_argument('--N', type=int, default=100)
parser.add_argument('--sigma', type=float, default=.1)
parser.add_argument('--bias', type=float, default=0.)
parser.add_argument('--n_hidden', type=int, default=25)
parser.add_argument('--n_epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--viz_batch_size', type=int, default=1000)
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--viz_every', type=int, default=1000)
parser.add_argument('--n_toy_data', type=int, default=50000)
parser.add_argument('--lr', type=float, default=.01)
parser.add_argument('--rbm_lr', type=float, default=.001)
parser.add_argument('--mcmc_lr', type=float, default=.003)
parser.add_argument('--temp', type=float, default=1.)
parser.add_argument('--tt', type=float, default=1.)
parser.add_argument('--weight_decay', type=float, default=.0)
parser.add_argument('--cd', type=int, default=10)
parser.add_argument('--img_size', type=int, default=28)
args = parser.parse_args()
main(args)