-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApp.py
198 lines (197 loc) · 9.48 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import streamlit as st
from Utils import *
import numpy as np
import os
#Language
selectedLanguage= st.sidebar.selectbox("Choose a Language", ['Italian','English'], 0)
#Name dashboard
# Lambda function to check if a given vaue is from 10 to 20.
langFunc = lambda x : 'App vaccini in Italia' if (selectedLanguage=='Italian') else 'Italian Dashboard Vaccines'
st.title(langFunc(selectedLanguage))
data=DataAnalysis()
#st.dataframe(data.df)
#show list of regions
listRegion=data.df.nome_regione.unique()
langFunc = lambda x : 'Scegliere una regione' if (selectedLanguage=='Italian') else "Choose a region"
selectedRegion= st.sidebar.selectbox(langFunc(selectedLanguage), listRegion, 0)
#select radio button for type of dose
if (selectedLanguage!='Italian'):
listTypeDose={'Total','First dose','Second dose'}
dictTypeDose={'Total': 'totale', 'First dose': 'prima_dose', 'Second dose': 'seconda_dose'}
else:
listTypeDose={'Totale','Prima dose','Seconda dose'}
dictTypeDose={'Totale': 'totale', 'Prima dose': 'prima_dose', 'Seconda dose': 'seconda_dose'}
langFunc = lambda x : 'Scegliere tipo di vaccino' if (selectedLanguage=='Italian') else "Choose Dose Type "
selectedTypeDose = st.sidebar.radio(langFunc(selectedLanguage), list(listTypeDose))
#prediction
##previsione immunità di gregge
today = date.today()
#today + pd.to_timedelta(np.arange(12), 'D')
langFunc = lambda x : '__Immunità di gregge__' if (selectedLanguage=='Italian') else "__Herd Immunity__"
st.markdown(langFunc(selectedLanguage))
name_cols=st.beta_columns(2)
dfOrder = data.df.sort_index()
totalDoses=data.df[dictTypeDose[selectedTypeDose]].sum()
sumRegions=dfOrder.groupby('data_somministrazione').sum()
langFunc = lambda x : 'Percentuale per Immunità di gregge' if (selectedLanguage=='Italian') else "Herd Immunity"
immunità = name_cols[0].slider(langFunc(selectedLanguage), min_value=0,max_value=100,value=60, step=5)
langFunc = lambda x : 'Media mobile su numero di giorni precedenti' if (selectedLanguage=='Italian') else "Average Number on days before"
numDaysBefore=name_cols[1].text_input(langFunc(selectedLanguage),value=7)
daysBefore = date.today() - timedelta(days=int(numDaysBefore)+1)
mean=sumRegions.loc[daysBefore.strftime("%Y-%m-%d"):today.strftime("%Y-%m-%d")]['totale'].mean()
i=0
while ((totalDoses/data.totalPopulation)*100<immunità):
totalDoses=totalDoses+mean
i=i+1
langFunc = lambda x : 'Prevista immunità di gregge in data ' if (selectedLanguage=='Italian') else "Predicted herd immunity on "
st.text(langFunc(selectedLanguage)+str((date.today() + timedelta(days=i))))
if(selectedLanguage=='Italian'):
st.text("Percentuale persone vaccinate con " +selectedTypeDose+' '+str(np.round((totalDoses/data.totalPopulation)*100,3))+"%")
st.title("Statistiche persone vaccinate")
st.markdown("__Andamento vaccini in Italia__")
else:
st.text("Percentage "+selectedTypeDose+" vaccinated people " +str(np.round((totalDoses/data.totalPopulation)*100,3))+"%")
st.title("Statistics vaccinated people")
st.markdown("__Trend overall Italy__")
fig=px.line(sumRegions,sumRegions.index,y=dictTypeDose[selectedTypeDose],labels={
dictTypeDose[selectedTypeDose]: selectedTypeDose,
"data_somministrazione": "Date",
},title=selectedTypeDose)
st.plotly_chart(fig)
#***********************************************************************************************************************
langFunc = lambda x : 'Andamento giornaliero in ' if (selectedLanguage=='Italian') else "Daily trend on "
st.title(langFunc(selectedLanguage)+selectedRegion)
regione=data.df[data.df['nome_regione']==selectedRegion]
all_data = regione.sort_index()
if(selectedLanguage=='Italian'):
fig=px.line(all_data,all_data.index,y=dictTypeDose[selectedTypeDose],labels={
dictTypeDose[selectedTypeDose]: selectedTypeDose,
"data_somministrazione": "Data",
},title=selectedRegion)
else:
fig=px.line(all_data,all_data.index,y=dictTypeDose[selectedTypeDose],labels={
dictTypeDose[selectedTypeDose]: selectedTypeDose,
"data_somministrazione": "Date",
},title=selectedRegion)
st.plotly_chart(fig)
#show the percentage vaccines for regions
#***********************************************************************************************************************
langFunc = lambda x : 'Percentuale vaccini nelle regioni' if (selectedLanguage=='Italian') else "Percentage vaccines for regions"
st.title(langFunc(selectedLanguage))
#selectedTypeDose=st.sidebar.selectbox("Choose Dose Type ", list(listTypeDose), 0)
percent=[]
data.sumDf()
for index, row in data.sum_df.iterrows():
percent.append(row[dictTypeDose[selectedTypeDose]]/data.regionData[row['Region']]*100)
data.sum_df['percentage']=percent
fig = px.bar(data.sum_df, x="Region", y="percentage", color="Region")
if(selectedLanguage!='Italian'):
fig.update_layout(width=800,height=600,
title="Percentage "+selectedTypeDose+" vaccines for region ",
xaxis_title="Regions",
yaxis_title="Percentage",
legend_title="Regions Name",
)
else:
fig.update_layout(width=800,height=600,
title="Percentuale "+selectedTypeDose+" vaccini per regione ",
xaxis_title="Regioni",
yaxis_title="Percentuale",
legend_title="Nome delle regioni",
)
st.plotly_chart(fig)
#***********************************************************************************************************************
#plot yesterday
langFunc = lambda x : 'Vaccini fatti ieri nelle regioni' if (selectedLanguage=='Italian') else "Yesterday vaccines for regions"
st.title(langFunc(selectedLanguage))
data.yesterdayDf()
#selectedTypeDose= st.selectbox("Choose Dose Type ", list(listTypeDose), 0,key='Yesterday')
fig = px.bar(data.df_Y, x="nome_regione", y=dictTypeDose[selectedTypeDose], color="nome_regione")
if(selectedLanguage!='Italian'):
fig.update_layout(width=800,height=600,
xaxis_title="Regions",
yaxis_title=selectedTypeDose,
legend_title="Regions Name",
)
else:
fig.update_layout(width=800,height=600,
xaxis_title="Regioni",
yaxis_title=selectedTypeDose,
legend_title="Nome delle regioni",
)
st.plotly_chart(fig)
#***********************************************************************************************************************
#rapporto vaccini consegnati e fatti
langFunc = lambda x : 'Rapporto vaccini fatti su vaccini ricevuti' if (selectedLanguage=='Italian') else "Ratio vaccines done over delivered"
st.title(langFunc(selectedLanguage))
data.readSummaryData()
fig = px.bar(data.dfSummary, x="nome_area", y=data.dfSummary['dosi_somministrate']/data.dfSummary['dosi_consegnate'], color="nome_area")
if(selectedLanguage!='Italian'):
fig.update_layout(width=800,height=600,
xaxis_title="Regions",
yaxis_title="Ratio vaccine done over delivered",
legend_title="Regions Name",
)
else:
fig.update_layout(width=800,height=600,
xaxis_title="Regioni",
yaxis_title="Rapport vaccini fatti su ricevuti",
legend_title="Nome delle regioni",
)
st.plotly_chart(fig)
#***********************************************************************************************************************
#Groupby "fascia_anagrafica" selected region
langFunc = lambda x : 'Vaccini fatti ad intervalli d\'età in ' if (selectedLanguage=='Italian') else "Bar plot registry range on "
st.title(langFunc(selectedLanguage)+selectedRegion)
data.readDosingData()
grouped = data.dfDosing[data.dfDosing['nome_regione']==selectedRegion].groupby('fascia_anagrafica').sum()
grouped=grouped.reset_index()
if(dictTypeDose[selectedTypeDose]!='totale'):
fig = px.bar(grouped, x="fascia_anagrafica", y=dictTypeDose[selectedTypeDose],color='fascia_anagrafica')
if(selectedLanguage!='Italian'):
fig.update_layout(width=600,height=300,
xaxis_title="Registry Range",
legend_title="Registry Range",
yaxis_title=selectedTypeDose,
)
else:
fig.update_layout(width=600,height=300,
xaxis_title="Intervalli d\'età",
legend_title="Intervalli d\'età",
yaxis_title=selectedTypeDose,
)
st.plotly_chart(fig)
else:
if(selectedLanguage!='Italian'):
st.text("Data not found")
else:
st.text("Dati non trovati")
#type vaccine selected region
#***********************************************************************************************************************
langFunc = lambda x : 'Tipi di vaccino fatti in ' if (selectedLanguage=='Italian') else "Vaccine types made on "
st.title(langFunc(selectedLanguage)+selectedRegion)
vax=data.dfDosing[data.dfDosing['nome_regione']==selectedRegion].groupby('fornitore').sum()
vax=vax.reset_index()
if(dictTypeDose[selectedTypeDose]!='totale'):
fig = px.bar(vax, x="fornitore", y=dictTypeDose[selectedTypeDose],color='fornitore')
if(selectedLanguage!='Italian'):
fig.update_layout(width=600,height=300,
xaxis_title="Supplier",
yaxis_title=selectedTypeDose,
legend_title="Supplier",
)
else:
fig.update_layout(width=600,height=300,
xaxis_title="Fornitore",
yaxis_title=selectedTypeDose,
legend_title="Fornitore",
)
st.plotly_chart(fig)
else:
if(selectedLanguage!='Italian'):
st.text("Data not found")
else:
st.text("Dati non trovati")