-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathglobal.c
158 lines (129 loc) · 6.66 KB
/
global.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "allvars.h"
#include "proto.h"
/* This routine computes various global properties of the particle
* distribution and stores the result in the struct `SysState'.
* Currently, not all the information that's computed here is
* actually used (e.g. momentum is not really used anywhere),
* just the energies are written to a log-file every once in a while.
*/
/*
* This file was originally part of the GADGET3 code developed by
* Volker Springel. The code has been modified
* somewhat by Phil Hopkins (phopkins@caltech.edu) for GIZMO.
*/
void compute_global_quantities_of_system(void)
{
int i, j, n;
struct state_of_system sys;
double a1, a2, a3;
double entr = 0, egyspec, vel[3];
double dt_entr, dt_gravkick, dt_hydrokick;
if(All.ComovingIntegrationOn)
{
a1 = All.Time;
a2 = All.Time * All.Time;
a3 = All.Time * All.Time * All.Time;
}
else
{
a1 = a2 = a3 = 1;
}
for(n = 0; n < 6; n++)
{
sys.MassComp[n] = sys.EnergyKinComp[n] = sys.EnergyPotComp[n] = sys.EnergyIntComp[n] = 0;
for(j = 0; j < 4; j++) {sys.CenterOfMassComp[n][j] = sys.MomentumComp[n][j] = sys.AngMomentumComp[n][j] = 0;}
}
for(i = 0; i < NumPart; i++)
{
sys.MassComp[P[i].Type] += P[i].Mass;
#if defined(EVALPOTENTIAL) || defined(COMPUTE_POTENTIAL_ENERGY)
sys.EnergyPotComp[P[i].Type] += 0.5 * P[i].Mass * P[i].Potential / a1;
#endif
integertime dt_integerstep = GET_PARTICLE_INTEGERTIME(i);
dt_entr = dt_hydrokick = (All.Ti_Current - (P[i].Ti_begstep + dt_integerstep / 2)) * UNIT_INTEGERTIME_IN_PHYSICAL;
if(All.ComovingIntegrationOn) {dt_gravkick = get_gravkick_factor(P[i].Ti_begstep, All.Ti_Current) - get_gravkick_factor(P[i].Ti_begstep, P[i].Ti_begstep + dt_integerstep / 2);}
else {dt_gravkick = dt_hydrokick;}
for(j = 0; j < 3; j++)
{
vel[j] = P[i].Vel[j] + P[i].GravAccel[j] * dt_gravkick;
if(P[i].Type == 0) {vel[j] += SphP[i].HydroAccel[j] * dt_hydrokick * All.cf_atime;} /* convert from physical to code vel */
}
if(P[i].Type == 0) {entr = DMAX(0.1*SphP[i].InternalEnergy, SphP[i].InternalEnergy + SphP[i].DtInternalEnergy * dt_entr);}
#ifdef PMGRID
if(All.ComovingIntegrationOn)
{dt_gravkick = get_gravkick_factor(All.PM_Ti_begstep, All.Ti_Current) - get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);}
else {dt_gravkick = (All.Ti_Current - (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2) * All.Timebase_interval;}
for(j = 0; j < 3; j++) {vel[j] += P[i].GravPM[j] * dt_gravkick;}
#endif
sys.EnergyKinComp[P[i].Type] += 0.5 * P[i].Mass * (vel[0] * vel[0] + vel[1] * vel[1] + vel[2] * vel[2]) / a2;
if(P[i].Type == 0) {egyspec = entr; sys.EnergyIntComp[0] += P[i].Mass * egyspec;}
for(j = 0; j < 3; j++)
{
sys.MomentumComp[P[i].Type][j] += P[i].Mass * vel[j];
sys.CenterOfMassComp[P[i].Type][j] += P[i].Mass * P[i].Pos[j];
}
sys.AngMomentumComp[P[i].Type][0] += P[i].Mass * (P[i].Pos[1] * vel[2] - P[i].Pos[2] * vel[1]);
sys.AngMomentumComp[P[i].Type][1] += P[i].Mass * (P[i].Pos[2] * vel[0] - P[i].Pos[0] * vel[2]);
sys.AngMomentumComp[P[i].Type][2] += P[i].Mass * (P[i].Pos[0] * vel[1] - P[i].Pos[1] * vel[0]);
}
/* some the stuff over all processors */
MPI_Reduce(&sys.MassComp[0], &SysState.MassComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyPotComp[0], &SysState.EnergyPotComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyIntComp[0], &SysState.EnergyIntComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyKinComp[0], &SysState.EnergyKinComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.MomentumComp[0][0], &SysState.MomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);
MPI_Reduce(&sys.AngMomentumComp[0][0], &SysState.AngMomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);
MPI_Reduce(&sys.CenterOfMassComp[0][0], &SysState.CenterOfMassComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);
if(ThisTask == 0)
{
for(i = 0; i < 6; i++) {SysState.EnergyTotComp[i] = SysState.EnergyKinComp[i] + SysState.EnergyPotComp[i] + SysState.EnergyIntComp[i];}
SysState.Mass = SysState.EnergyKin = SysState.EnergyPot = SysState.EnergyInt = SysState.EnergyTot = 0;
for(j = 0; j < 3; j++) {SysState.Momentum[j] = SysState.AngMomentum[j] = SysState.CenterOfMass[j] = 0;}
for(i = 0; i < 6; i++)
{
SysState.Mass += SysState.MassComp[i];
SysState.EnergyKin += SysState.EnergyKinComp[i];
SysState.EnergyPot += SysState.EnergyPotComp[i];
SysState.EnergyInt += SysState.EnergyIntComp[i];
SysState.EnergyTot += SysState.EnergyTotComp[i];
for(j = 0; j < 3; j++)
{
SysState.Momentum[j] += SysState.MomentumComp[i][j];
SysState.AngMomentum[j] += SysState.AngMomentumComp[i][j];
SysState.CenterOfMass[j] += SysState.CenterOfMassComp[i][j];
}
}
for(i = 0; i < 6; i++) {for(j = 0; j < 3; j++) {if(SysState.MassComp[i] > 0) {SysState.CenterOfMassComp[i][j] /= SysState.MassComp[i];}}}
for(j = 0; j < 3; j++) {if(SysState.Mass > 0) {SysState.CenterOfMass[j] /= SysState.Mass;}}
for(i = 0; i < 6; i++)
{
SysState.CenterOfMassComp[i][3] = SysState.MomentumComp[i][3] = SysState.AngMomentumComp[i][3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMassComp[i][3] += SysState.CenterOfMassComp[i][j] * SysState.CenterOfMassComp[i][j];
SysState.MomentumComp[i][3] += SysState.MomentumComp[i][j] * SysState.MomentumComp[i][j];
SysState.AngMomentumComp[i][3] += SysState.AngMomentumComp[i][j] * SysState.AngMomentumComp[i][j];
}
SysState.CenterOfMassComp[i][3] = sqrt(SysState.CenterOfMassComp[i][3]);
SysState.MomentumComp[i][3] = sqrt(SysState.MomentumComp[i][3]);
SysState.AngMomentumComp[i][3] = sqrt(SysState.AngMomentumComp[i][3]);
}
SysState.CenterOfMass[3] = SysState.Momentum[3] = SysState.AngMomentum[3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMass[3] += SysState.CenterOfMass[j] * SysState.CenterOfMass[j];
SysState.Momentum[3] += SysState.Momentum[j] * SysState.Momentum[j];
SysState.AngMomentum[3] += SysState.AngMomentum[j] * SysState.AngMomentum[j];
}
SysState.CenterOfMass[3] = sqrt(SysState.CenterOfMass[3]);
SysState.Momentum[3] = sqrt(SysState.Momentum[3]);
SysState.AngMomentum[3] = sqrt(SysState.AngMomentum[3]);
}
/* give everyone the result, maybe the want to do something with it */
MPI_Bcast(&SysState, sizeof(struct state_of_system), MPI_BYTE, 0, MPI_COMM_WORLD);
}