-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.agda
494 lines (357 loc) · 19.3 KB
/
README.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
{-# OPTIONS --safe #-}
-- See README.md for prerequisites and Agda instructions.
module README where
open import Multiset.Prelude
open import Multiset.Util using (isInjective)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism using (Iso ; section)
open import Cubical.Data.List as List using (List)
open import Cubical.Data.Nat as Nat using (ℕ ; suc)
open import Cubical.Data.SumFin using (Fin)
open import Cubical.HITs.PropositionalTruncation as PT using (∥_∥₁)
open import Cubical.HITs.SetQuotients as SQ using (_/_)
open import Cubical.HITs.SetTruncation as ST using (∥_∥₂ ; ∣_∣₂)
-- 3. The Finite Bag Functor in Sets
-- ---------------------------------
-- 3.1 The free commutative monoid
-- -------------------------------
import Multiset.FCM
-- Finite multisets, defined as the free commutative monoid on a type.
-- Implemented as a HIT:
FCM : ∀ {ℓ} → Type ℓ → Type ℓ
FCM = Multiset.FCM.M
-- 3.2 As a Quotient of Lists
-- --------------------------
import Multiset.Ordering.Order
import Multiset.Ordering.PermEquiv
-- Inductive definition of permutations of lists:
Perm : ∀ {A} → List A → List A → Type
Perm = Multiset.Ordering.Order.Perm
-- Finite multisets as lists modulo permutation:
List[_]/Perm : Type → Type
List[_]/Perm = Multiset.Ordering.Order.Mset
import Multiset.ListQuotient.Base
-- Relational lifting of R to a relation on lists
DRelator : ∀ {ℓ} {X Y : Type ℓ} (R : X → Y → Type ℓ) → List X → List Y → Type ℓ
DRelator = Multiset.ListQuotient.Base.DRelator
Relator : ∀ {ℓ} {X : Type ℓ} (R : X → X → Type ℓ) → List X → List X → Type ℓ
Relator = Multiset.ListQuotient.Base.Relator
import Multiset.Ordering.PermEquiv
-- The relational lifting of paths witnesses exactly the mere existence of a permutation:
∥Perm∥₁≃Relator≡ : {A : Type} {xs ys : List A} → ∥ Perm xs ys ∥₁ ≃ Relator _≡_ xs ys
∥Perm∥₁≃Relator≡ = Multiset.Ordering.PermEquiv.∥Perm∥₁≃Relator=
-- 3.3 As an Analytic Functor
-- --------------------------
import Multiset.FMSet
import Multiset.ListQuotient.FMSetEquiv
-- Finite multisets as an analytic functor:
FMSet : ∀ {ℓ} → Type ℓ → Type ℓ
FMSet = Multiset.FMSet.FMSet
-- The action of the symmetric group that `FMSet` is quotiented by:
SymAct : ∀ {X} → (n : ℕ) → (v w : Fin n → X) → Type
SymAct = Multiset.FMSet.SymmetricAction
-- The non-propositionally truncated version:
SymAct∞ : ∀ {X} → (n : ℕ) → (v w : Fin n → X) → Type
SymAct∞ = Multiset.ListQuotient.FMSetEquiv.SymmetricActionΣ
-- Abbreviation with size implict:
_∼_ = Multiset.FMSet._∼_
-- Finite choice for Fin-indexed types:
import Multiset.FiniteChoice
module FiniteChoice {n : ℕ} (Y : Fin n → Type) where
finChoiceEquiv : ((k : Fin n) → ∥ Y k ∥₂) ≃ ∥ ((k : Fin n) → Y k) ∥₂
finChoiceEquiv = Multiset.FiniteChoice.setFinChoice≃ Y
box : ((k : Fin n) → ∥ Y k ∥₂) → ∥ ((k : Fin n) → Y k) ∥₂
box = Multiset.FiniteChoice.box
unbox : ∥ ((k : Fin n) → Y k) ∥₂ → ((k : Fin n) → ∥ Y k ∥₂)
unbox = Multiset.FiniteChoice.unbox
-- Dependent eliminator for Fin-indexed families:
elim-∥_∥₂-fin : {n : ℕ} (X : Type) {B : (Fin n → ∥ X ∥₂) → Type}
→ ((∣v∣ : Fin n → ∥ X ∥₂) → isSet (B ∣v∣))
→ ((v : Fin n → X) → B (∣_∣₂ ∘ v))
→ (v : Fin n → ∥ X ∥₂) → B v
elim-∥ X ∥₂-fin = Multiset.FiniteChoice.elimₙ
-- Propositional computation rule for the eliminator:
elim-∥_∥₂-finᵝ : {n : ℕ} (X : Type) {B : (Fin n → ∥ X ∥₂) → Type}
→ (setB : (∣v∣ : Fin n → ∥ X ∥₂) → isSet (B ∣v∣))
→ (choice : (v : Fin n → X) → B (∣_∣₂ ∘ v))
→ (v : Fin n → X)
→ elim-∥ X ∥₂-fin setB choice (∣_∣₂ ∘ v) ≡ choice v
elim-∥ X ∥₂-finᵝ = Multiset.FiniteChoice.elimₙ-comp
import Multiset.FMSet.Properties using (module STInvariance)
-- FMSet is invariant under set truncation:
FMSetTruncInvariance : {X : Type} → FMSet ∥ X ∥₂ ≃ FMSet X
FMSetTruncInvariance = Multiset.FMSet.Properties.STInvariance.STInvarianceEquiv
-- 3.4 Equivalence of Presentations
-- --------------------------------
import Multiset.Equivalences.FCM-PList
import Multiset.Equivalences.PList-RelatorList
-- The four presentations of finite multisets above are provably equivalent:
FMSetEquivs : ∀ X → FCM X ≃ FMSet X
FMSetEquivs X =
FCM X ≃⟨ Multiset.Equivalences.FCM-PList.M≃PList ⟩
List X / Perm ≃⟨ Multiset.Equivalences.PList-RelatorList.List/Perm≃List/Relator≡ ⟩
List X / Relator _≡_ ≃⟨ invEquiv Multiset.ListQuotient.FMSetEquiv.FMSet≃List/Relator= ⟩
FMSet X ■
-- All equivalences above are natural:
FCM≃List/Perm-natural = Multiset.Equivalences.FCM-PList.PListToM-nat
List/Perm≃List/Relator-natural = Multiset.Equivalences.PList-RelatorList.List/Perm→List/Relator≡-nat
FMSet→List/Relator=-natural = Multiset.Equivalences.PList-RelatorList.FMSet→List/Relator=-nat
-- Variations
-- ----------
-- The following are not mentioned explicitly in the paper, but are used when convenient:
import Multiset.Util.BundledVec
import Multiset.ListQuotient.ListFinality
-- A variation of lists, as a vector bundled with its length.
List' : Type → Type
List' = Multiset.Util.BundledVec.ΣVec
-- This type is convenient when proving that List preserves ω-chain limits,
-- since that relies on access to a countable family of lists *of the same length*.
_ = Multiset.ListQuotient.ListFinality.isTerminalFix⁻
-- The relational lifting, but for lists bundled with a length:
Relator' : _
Relator' = Multiset.Util.BundledVec.Relator
-- The two definitions are naturally equivalent:
ΣVec-List-nat = Multiset.ListQuotient.ListFinality.ΣVec-List-EquivNat
-- Equivalences of FCM and a HIT of head-permuted lists, defined in Cubical.HITs.FiniteMultiset.
open import Cubical.HITs.FiniteMultiset.Base using () renaming (FMSet to HeadPList)
import Multiset.Equivalences.FCM-HeadPList
_ : ∀ {X : Type} → FCM X ≃ HeadPList X
_ = Multiset.Equivalences.FCM-HeadPList.M≃HeadPList
-- 3.5 Definable Quotients and Sorting
import Multiset.Ordering.Order
isLinOrder : {A : Type} (R : A → A → Type) → Type
isLinOrder = Multiset.Ordering.Order.isLinOrder
module LexFMSet {A : Type} (setA : isSet A) (R : A → A → Type) (linR : isLinOrder R) where
import Multiset.Ordering.FMSetOrder
module S = Multiset.Ordering.FMSetOrder.SortingFMSet setA R linR
-- For linearly ordered A, `∼` induces a definable quotient:
sort : (n : ℕ) → (Fin n → A) / _∼_ → (Fin n → A)
sort = S.sortPVect
SymActDefinable : (n : ℕ) → section SQ.[_] (sort n)
SymActDefinable = S.sortPVect-section
-- For linearly ordered A, there is a canonical permutation between
-- any two unordered finite sets of A's:
SymActUntruncate : (n : ℕ) (v w : Fin n → A) → SymAct n v w → SymAct∞ n v w
SymActUntruncate = S.canonicalS
-- The result above is powered by a (weakly constant) function computing
-- a canonical permutation from an arbitrary permutation of lists:
canonPerm : (xs ys : List A) → Perm xs ys → Perm xs ys
canonPerm = Multiset.Ordering.Order.Sorting.canonPerm setA R linR
-- In particular, we can evaluate this function for concrete linear orders:
module BraidExample = Multiset.Ordering.Order.Example
-- The above extends to a linear order on finite multisets:
LexFMSet : FMSet A → FMSet A → Type
LexFMSet = S.LexFMSet
linLexFMSet : isLinOrder LexFMSet
linLexFMSet = S.linLexFMSet
-- 4 The Final Coalgebra in Sets
-- -----------------------------
import Multiset.Functor
import Multiset.Coalgebra
-- The structure of a functor of types:
Functor : (F : Type → Type) → Type _
Functor = Multiset.Functor.Functor
-- Coalgebras are unbundled functions:
Coalgebra : (F : Type → Type) → ⦃ Functor F ⦄ → _
Coalgebra F = ∀ {A} → A → F A
-- Coalgebra morphisms:
CoalgebraMorphism : (F : Type → Type) → ⦃ Functor F ⦄ → ∀ {A B} → (α : A → F A) → (β : B → F B) → Type _
CoalgebraMorphism = Multiset.Coalgebra.CoalgebraMorphism
-- 4.1 As an ω-Limit
-- -----------------
-- Definition of the terminal ω-chain of an endofunctor:
open import Multiset.Limit.TerminalChain as TerminalChain
using
( ch -- The chain 1 ← F(1) ← F²(1) ← ...
; _^_ -- Helper for the type Fⁿ(1)
; _map-!^_ -- Helper for the iterated map !ⁿ : Fⁿ⁺¹(1) → Fⁿ(1)
; Lim -- The type of limits of such a chain
; ShLim -- The limits of the shifted chain F(1) ← F²(1) ← F³(1) ← ...
; isLimitPreserving
)
module IterLimit (F : Type → Type) {{FunctorF : Functor F}} where
-- The limit and the shifted limit of a chain are equivalent
shift : Lim F ≃ ShLim F
shift = invEquiv (TerminalChain.ShLim≃Lim F)
-- The family of projections out of a limit.
ℓ : (n : ℕ) → Lim F → F ^ n
ℓ = TerminalChain.cut F
-- NB: This is not called "ℓ" in the rest of the code because
-- of naming conflicts with universe levels.
-- The limit-preservation maps into the shifted limit.
pres : F (Lim F) → ShLim F
pres = TerminalChain.pres F
-- If F preserves limits of this shape, it admits a fixpoint:
fix : isLimitPreserving F → F (Lim F) ≃ Lim F
fix = TerminalChain.fix
-- The inverse of the above equivalence is the structure map
-- of the final coalgebra:
coalg : isLimitPreserving F → Lim F → F (Lim F)
coalg = TerminalChain.Fixpoint.fix⁻
open import Multiset.Limit.Chain using (Chain ; ChainEquiv ; Limit)
import Multiset.Limit.Isomorphism
chainEquivToLimitEquiv : ∀ {ℓ} {C C' : Chain ℓ} → ChainEquiv C C' → Limit C ≃ Limit C'
chainEquivToLimitEquiv = Multiset.Limit.Isomorphism.mapLimit-pres-equiv
open IterLimit using (pres)
import Multiset.FCM.Limit
-- The Lesser Limit Principle of Omniscience:
open import Multiset.Omniscience using (LLPO)
-- Injectivity of the limit-preservation map of finite multisets implies LLPO.
-- Note that this is proved for the presentation as a HIT:
InjectiveFMSetPresToLLPO : isInjective (pres FCM) → LLPO
InjectiveFMSetPresToLLPO = Multiset.FCM.Limit.pres-inj⇒llpo
-- The crucial lemma that the above proof depends on:
LimitAlternationLemma = TerminalChain.diag-islim-alternating
-- The lemma instanciated to `FCM`, as necessary (kept here in order not to break old links):
FMSetAlternationLemma = TerminalChain.diag-islim-alternating (FCM {ℓ = ℓ-zero})
-- The detailed proof that completeness of two-element multisets implies LLPO:
CompleteToLLPO : Multiset.FCM.Limit.Complete → LLPO
CompleteToLLPO = Multiset.FCM.Limit.complete⇒llpo
-- NB: The proof of `isSetoidMorphismCoalgListToLLPO` is conceptually the same,
-- but might be slightly more readable than the above proof.
import Multiset.ListQuotient.ToInjectivity
-- LLPO also implies the injectivity of the limit-preservation map.
-- This time, we use lists modulo a relational lifting for the proof:
LLPOToInjectiveFMSetPres : LLPO → isInjective (pres (λ X → List X / Relator _≡_))
LLPOToInjectiveFMSetPres = Multiset.ListQuotient.ToInjectivity.llpo⇒pres-inj
import Multiset.FMSet.Limit
-- Using the third preservation of finite multisets in terms of an analytic
-- functor, we can at least show that the limit-preservation map has a section,
-- i.e. the limit is weakly preserved:
LexFMSet^ : (n : ℕ) → FMSet ^ n → FMSet ^ n → Type
LexFMSet^ = Multiset.FMSet.Limit.LexFMSet^
linLexIterFMSet : ∀ n → isLinOrder (LexFMSet^ n)
linLexIterFMSet = Multiset.FMSet.Limit.linLexFMSet^
FMSetPresSection : section (pres FMSet) Multiset.FMSet.Limit.PresSection.pres⁻¹
FMSetPresSection = Multiset.FMSet.Limit.PresSection.pres-section
-- 4.2 As a Quotient of the Final List-Coalgebra
-- ---------------------------------------------
import Multiset.ListQuotient.Bisimilarity
-- List has a final coalgebra whose carrier is the type of ordered non-wellfounded trees:
Tree = Multiset.ListQuotient.ListFinality.Tree
_ : Tree ≡ Lim List'
_ = refl
coalgList : Tree → List' Tree
coalgList = Multiset.ListQuotient.ListFinality.fix⁻
-- Relation on finite approximation of infinite trees that relates
-- them up to the order of their subtrees:
Approx : (n : ℕ) → List' ^ n → List' ^ n → Type
Approx = Multiset.ListQuotient.Bisimilarity.Approx
!-Approx : (n : ℕ) {s t : (List' ^ (suc n))}
→ Relator' (Approx n) s t → Approx n ((List' map-!^ n) s) ((List' map-!^ n) t)
!-Approx = Multiset.ListQuotient.Bisimilarity.Approx-π
-- Bisimilarity of trees. This is the limit of a chain defined in
-- terms of `Approx` above:
Bisim : (s t : Tree) → Type
Bisim = Multiset.ListQuotient.Bisimilarity.Bisim
open import Multiset.Axioms.Choice as AOC using (AC)
import Multiset.ListQuotient.LLPO
open import Cubical.Categories.Functor using () renaming (Functor to Functor')
import Multiset.Categories.Coalgebra as Cat
open import Cubical.Categories.Instances.Sets using (SET)
-- Under the assuming that `coalgList` is a morphism of setoids, we can deduce the following:
module Setoid (isSetoidMorCoalgList : (∀ {s} {t} → Bisim s t → Relator' Bisim (coalgList s) (coalgList t))) where
-- 1) The anti-constructive principle LLPO:
isSetoidMorphismCoalgListToLLPO : LLPO
isSetoidMorphismCoalgListToLLPO = Multiset.ListQuotient.LLPO.fix⁻-preserves-≈→LLPO isSetoidMorCoalgList
import Multiset.Setoid.Category
open import Cubical.Categories.Category using (Category)
-- The category of setoids: Objects are pairs of hSets and prop-valued equivalence relations;
-- morphisms are relation-preserving functions modulo the relation in the domain
SetoidCategory : Category (ℓ-suc ℓ-zero) ℓ-zero
SetoidCategory = Multiset.Setoid.Category.SetoidCategory ℓ-zero ℓ-zero
FMSetoid : Functor' SetoidCategory SetoidCategory
FMSetoid = Multiset.Util.BundledVec.RelatorFunctor
import Multiset.ListQuotient.Finality
-- 2) coalgList induces a terminal coalgebra of the functor `FMSetoid : (X, R) ↦ (List' X, Relator R)`:
finalFMSetoidCoalgebra : Cat.TerminalCoalgebra FMSetoid
finalFMSetoidCoalgebra = Multiset.ListQuotient.Finality.finalFMSetoidCoalgebra isSetoidMorCoalgList
import Multiset.ListQuotient.Fixpoint
FMSet' : Type → Type
FMSet' X = List' X / (Relator' _≡_)
-- 3) coalgList lifts to a FMSet-coalgebra, and induces a fixpoint of trees modulo bisimilarity:
coalgFMSet : Tree / Bisim → FMSet' (Tree / Bisim)
coalgFMSet = Multiset.ListQuotient.Fixpoint.fixQ⁻ isSetoidMorCoalgList
FMSetFixpointTree/Bisim : FMSet' (Tree / Bisim) ≃ Tree / Bisim
FMSetFixpointTree/Bisim = Multiset.ListQuotient.Fixpoint.FMSetFixpointTree/Bisim isSetoidMorCoalgList
FMSetFunctor : Functor' (SET _) (SET _)
FMSetFunctor = Multiset.ListQuotient.Fixpoint.FMSetFunctor
-- 4) Assuming the axiom of choice this fixpoint is the largest, i.e. coalgFMSet is the final coalgebra:
FinalFMSetCoalgebra : AC _ _ _ → Cat.TerminalCoalgebra FMSetFunctor
FinalFMSetCoalgebra = Multiset.ListQuotient.Fixpoint.TerminalfixQ⁻ isSetoidMorCoalgList
-- 5 The Finite Bag Functor in Groupoids
-- -------------------------------------
open import Cubical.Data.FinSet.Base using (FinSet)
import Multiset.Tote
-- The "large" type of bags, defined in terms of FinSet:
Tote : Type₀ → Type₁
Tote = Multiset.Tote.Tote
isGroupoidTote : ∀ {X : Type} → isGroupoid X → isGroupoid (Tote X)
isGroupoidTote = Multiset.Tote.isGroupoidTote
-- The set-truncation of this type is naturally equivalent to finite multisets:
FMSetToteTruncEquiv : {X : Type} → FMSet X ≃ ∥ Tote X ∥₂
FMSetToteTruncEquiv = Multiset.Tote.FMSet≃∥Tote∥₂
FMSet→∥Tote∥₂ : ∀ {X : Type} → FMSet X → ∥ Tote X ∥₂
FMSet→∥Tote∥₂ = equivFun FMSetToteTruncEquiv
isNatural-FMSetToteTruncEquiv : ∀ {X Y : Type} (f : X → Y)
→ FMSet→∥Tote∥₂ ∘ Multiset.FMSet.map f ≡ ST.map (Multiset.Tote.map f) ∘ FMSet→∥Tote∥₂
isNatural-FMSetToteTruncEquiv = Multiset.Tote.isNatural-FMSet≃∥Tote∥₂
import Multiset.Bij
-- A small type, equivalent to the large type of (Bishop-) finite types:
Bij : Type
Bij = Multiset.Bij.Bij
BinFinSetEquiv : Bij ≃ FinSet ℓ-zero
BinFinSetEquiv = Multiset.Bij.Bij≃FinSet
import Multiset.Bag
Bag : Type → Type
Bag = Multiset.Bag.Bag
-- Both defintions, small and large, are equivalent:
BagToteEquiv : ∀ {X : Type} → Bag X ≃ Tote X
BagToteEquiv = Multiset.Bag.Bag≃Tote
-- The equivalence is natural:
isNaturalBagToteEquiv : {X Y : Type} → (f : X → Y)
→ equivFun BagToteEquiv ∘ Multiset.Bag.map f ≡ Multiset.Tote.map f ∘ equivFun BagToteEquiv
isNaturalBagToteEquiv = Multiset.Bag.isNaturalBagToteEquiv
-- 6 The Final Coalgebra in Groupoids
-- ----------------------------------
-- Bag preserves limits of ω-chains, so by [Ahrens et al. '15] it admits a final coalgebra:
isLimitPreservingBag : isEquiv (pres Bag)
isLimitPreservingBag = Multiset.Bag.isLimitPreservingBag
import Multiset.FMSet.Fixpoint
-- `FMSetToteTruncEquiv` from above also applies to `Bag`:
TruncBagFMSetEquiv : {X : Type} → ∥ Bag X ∥₂ ≃ FMSet X
TruncBagFMSetEquiv = Multiset.FMSet.Fixpoint.TruncBagFMSetEquiv
-- This applies also to the iterated types:
IterTruncBagFMSetEquiv : ∀ n → ∥ Bag ^ n ∥₂ ≃ FMSet ^ n
IterTruncBagFMSetEquiv = Multiset.FMSet.Fixpoint.IterTruncBagFMSetEquiv
-- Truncating the type of Bag-limits yields a fixpoint for FMSet:
FMSetFixpointTruncBagLim : FMSet ∥ Lim Bag ∥₂ ≃ ∥ Lim Bag ∥₂
FMSetFixpointTruncBagLim = Multiset.FMSet.Fixpoint.FMSetFixSetTruncTree
import Multiset.FMSet.Finality
FMSetFunctor' : Functor' (SET _) (SET _)
FMSetFunctor' = Multiset.FMSet.Finality.FMSetFunctor
module _
-- Assume bag has a final coalgebra (follows from `isLimitPreservingBag` + [Ahrens et al. '15])
(ana : {X : Type} → (c : X → Bag X) → X → Lim Bag)
(anaEq : {X : Type} (c : X → Bag X)
→ ana c ≡ Multiset.Bag.fix⁺ ∘ Multiset.Bag.map (ana c) ∘ c)
(anaUniq : {X : Type} (c : X → Bag X)
→ (h : X → Lim Bag)
→ h ≡ Multiset.Bag.fix⁺ ∘ (Multiset.Bag.map h) ∘ c
→ ana c ≡ h)
where
abstract
e : {X : Type} → ∥ Bag X ∥₂ ≃ FMSet X
e = Multiset.FMSet.Fixpoint.TruncBagFMSetEquiv
eNat : ∀ {X Y : Type} (f : X → Y) → equivFun e ∘ ST.map (Multiset.Bag.map f) ≡ Multiset.FMSet.map f ∘ equivFun e
eNat = Multiset.FMSet.Fixpoint.isNaturalTruncBagFMSetEquiv
-- Assuming two instance of choice, one for groupoids and one for sets, FMSet admits a final coalgebra in the category of hSets:
FMSetFinalCoalgebra : (ac32 : AOC.AC[Gpd,Set] ℓ-zero ℓ-zero) → (ac : AOC.AC[Set,Prop] ℓ-zero ℓ-zero) → Cat.TerminalCoalgebra FMSetFunctor'
FMSetFinalCoalgebra = Multiset.FMSet.Finality.FinalityWithChoice.FMSetFinalCoalgebra ana anaEq anaUniq e eNat
import Multiset.FMSet.FiniteFinality
coalgFinite : Cat.Coalgebra FMSetFunctor'
coalgFinite = Multiset.FMSet.FiniteFinality.FinalityFinite.coalg ana anaEq anaUniq e eNat
-- When not assuming choice, there is still a unique coalgebra morphism from a coalgebra with finite carrier and `coalg'`:
uniqueCoalgMorphismFinCarrier : ∀ n (c : Fin n → FMSet (Fin n)) → isContr (Cat.CoalgebraHom FMSetFunctor' (Cat.coalgebra c) coalgFinite)
uniqueCoalgMorphismFinCarrier = Multiset.FMSet.FiniteFinality.FinalityFinite.uniqueFiniteCoalg ana anaEq anaUniq e eNat